traveling wave solutions
Recently Published Documents


TOTAL DOCUMENTS

1538
(FIVE YEARS 443)

H-INDEX

46
(FIVE YEARS 12)

Pramana ◽  
2022 ◽  
Vol 96 (1) ◽  
Author(s):  
Alphonse Houwe ◽  
Hadi Rezazadeh ◽  
Ahmet Bekir ◽  
Serge Y Doka

2022 ◽  
Vol 2022 ◽  
pp. 1-6
Author(s):  
Tianyong Han ◽  
Jiajin Wen ◽  
Zhao Li

This paper mainly studies the bifurcation and single traveling wave solutions of the variable-coefficient Davey–Stewartson system. By employing the traveling wave transformation, the variable-coefficient Davey–Stewartson system is reduced to two-dimensional nonlinear ordinary differential equations. On the one hand, we use the bifurcation theory of planar dynamical systems to draw the phase diagram of the variable-coefficient Davey–Stewartson system. On the other hand, we use the polynomial complete discriminant method to obtain the exact traveling wave solution of the variable-coefficient Davey–Stewartson system.


2022 ◽  
Vol 2022 ◽  
pp. 1-12
Author(s):  
Yali Shen ◽  
Ying Yang

In this article, a generalized (3 + 1)-dimensional nonlinear evolution equation (NLEE), which can be obtained by a multivariate polynomial, is investigated. Based on the Hirota bilinear method, the N-soliton solution and bilinear Bäcklund transformation (BBT) with explicit formulas are successfully constructed. By using BBT, two traveling wave solutions and a mixed solution of the generalized (3 + 1)-dimensional NLEE are obtained. Furthermore, the lump and the interaction solutions for the equation are constructed. Finally, the dynamic properties of the lump and the interaction solutions are described graphically.


Author(s):  
Guo Lin ◽  
Yibing Xing

This paper studies the minimal wave speed of traveling wave solutions in predator–prey models, in which there are several groups of predators that compete among different groups. We investigate the existence and nonexistence of traveling wave solutions modeling the invasion of predators and coexistence of these species. When the positive solution of the corresponding kinetic system converges to the unique positive steady state, a threshold that is the minimal wave speed of traveling wave solutions is obtained. To finish the proof, we construct contracting rectangles and upper–lower solutions and apply the asymptotic spreading theory of scalar equations. Moreover, multiple propagation thresholds in the corresponding initial value problem are presented by numerical examples, and one threshold may be the minimal wave speed of traveling wave solutions.


Sign in / Sign up

Export Citation Format

Share Document