Asymptotic Analysis of Queueing Systems with Finite Buffer Space

Author(s):  
Evsey Morozov ◽  
Ruslana Nekrasova ◽  
Lyubov Potakhina ◽  
Oleg Tikhonenko
Mathematics ◽  
2021 ◽  
Vol 9 (18) ◽  
pp. 2187
Author(s):  
Katsunobu Sasanuma

This short paper concerns the analysis of the M/M/k queueing system with customer abandonment. In this system, service managers provide a finite buffer space, which is a waiting area that prevents customers from abandoning the system. Abandonment of the system can occur from reneging (exiting from the queue while waiting), and/or balking (leaving the system without waiting). We derive an analytical expression to represent the impact of the buffer space capacity on the delay probability and the abandonment probability for a system with deferred abandonment. The result indicates the provision of the buffer space in a large system could only increase the delay probability while the abandonment probability remains unchanged. Despite the benevolent intentions of service managers, providing a buffer space may exacerbate the performance of larger systems.


1990 ◽  
Vol 22 (03) ◽  
pp. 764-767 ◽  
Author(s):  
Ludolf E. Meester ◽  
J. George Shanthikumar

We consider a tandem queueing system with m stages and finite intermediate buffer storage spaces. Each stage has a single server and the service times are independent and exponentially distributed. There is an unlimited supply of customers in front of the first stage. For this system we show that the number of customers departing from each of the m stages during the time interval [0, t] for any t ≧ 0 is strongly stochastically increasing and concave in the buffer storage capacities. Consequently the throughput of this tandem queueing system is an increasing and concave function of the buffer storage capacities. We establish this result using a sample path recursion for the departure processes from the m stages of the tandem queueing system, that may be of independent interest. The concavity of the throughput is used along with the reversibility property of tandem queues to obtain the optimal buffer space allocation that maximizes the throughput for a three-stage tandem queue.


1990 ◽  
Vol 22 (3) ◽  
pp. 764-767 ◽  
Author(s):  
Ludolf E. Meester ◽  
J. George Shanthikumar

We consider a tandem queueing system with m stages and finite intermediate buffer storage spaces. Each stage has a single server and the service times are independent and exponentially distributed. There is an unlimited supply of customers in front of the first stage. For this system we show that the number of customers departing from each of the m stages during the time interval [0, t] for any t ≧ 0 is strongly stochastically increasing and concave in the buffer storage capacities. Consequently the throughput of this tandem queueing system is an increasing and concave function of the buffer storage capacities. We establish this result using a sample path recursion for the departure processes from the m stages of the tandem queueing system, that may be of independent interest. The concavity of the throughput is used along with the reversibility property of tandem queues to obtain the optimal buffer space allocation that maximizes the throughput for a three-stage tandem queue.


1984 ◽  
Vol 21 (4) ◽  
pp. 870-886 ◽  
Author(s):  
J. P. C. Blanc

A technique is developed for the analysis of the asymptotic behaviour in the long run of queueing systems with two waiting lines. The generating function of the time-dependent joint queue-length distribution is obtained with the aid of the theory of boundary value problems of the Riemann–Hilbert type and by introducing a conformal mapping of the unit disk onto a given domain. In the asymptotic analysis an extensive use is made of theorems on the boundary behaviour of such conformal mappings.


Sign in / Sign up

Export Citation Format

Share Document