scholarly journals Interestingness Prediction by Robust Learning to Rank

Author(s):  
Yanwei Fu ◽  
Timothy M. Hospedales ◽  
Tao Xiang ◽  
Shaogang Gong ◽  
Yuan Yao
IEEE Access ◽  
2022 ◽  
pp. 1-1
Author(s):  
Xin Wu ◽  
Qing Liu ◽  
Jiarui Qin ◽  
Yong Yu

2017 ◽  
Vol 47 (6) ◽  
pp. 1007-1018 ◽  
Author(s):  
Jinzhong Li ◽  
Guanjun Liu ◽  
Chungang Yan ◽  
Changjun Jiang

10.28945/3602 ◽  
2016 ◽  
Vol 15 ◽  
pp. 593-609
Author(s):  
Hsun-Ming Lee ◽  
Ju Long ◽  
Lucian Visinescu

Developing Business Intelligence (BI) has been a top priority for enterprise executives in recent years. To meet these demands, universities need to prepare students to work with BI in enterprise settings. In this study, we considered a business simulator that offers students opportunities to apply BI and make top-management decisions in a system used by real-world professionals. The simulation-based instruction can be effective only if students are not discouraged by the difficulty of using the BI computer system and comprehending the complex BI subjects. Constructivist practices embedded in the business simulation are investigated to understand their potentials for helping the students to overcome the perceived difficulty. Consequently, it would enable instructors to more efficiently use the simulator by providing insights on its pedagogical practices. Our findings showed that the constructivist practices such as collaboration and subject integration positively influence active learning and meaningful learning respectively. In turn, both active learning and meaningful learning positively influence business intelligence motivational behavior. These findings can be further used to develop a robust learning environment in BI classes.


Author(s):  
Kris Ferreira ◽  
Sunanda Parthasarathy ◽  
Shreyas Sekar
Keyword(s):  

2021 ◽  
Vol 39 (2) ◽  
pp. 1-29
Author(s):  
Qingyao Ai ◽  
Tao Yang ◽  
Huazheng Wang ◽  
Jiaxin Mao

How to obtain an unbiased ranking model by learning to rank with biased user feedback is an important research question for IR. Existing work on unbiased learning to rank (ULTR) can be broadly categorized into two groups—the studies on unbiased learning algorithms with logged data, namely, the offline unbiased learning, and the studies on unbiased parameters estimation with real-time user interactions, namely, the online learning to rank. While their definitions of unbiasness are different, these two types of ULTR algorithms share the same goal—to find the best models that rank documents based on their intrinsic relevance or utility. However, most studies on offline and online unbiased learning to rank are carried in parallel without detailed comparisons on their background theories and empirical performance. In this article, we formalize the task of unbiased learning to rank and show that existing algorithms for offline unbiased learning and online learning to rank are just the two sides of the same coin. We evaluate eight state-of-the-art ULTR algorithms and find that many of them can be used in both offline settings and online environments with or without minor modifications. Further, we analyze how different offline and online learning paradigms would affect the theoretical foundation and empirical effectiveness of each algorithm on both synthetic and real search data. Our findings provide important insights and guidelines for choosing and deploying ULTR algorithms in practice.


Sign in / Sign up

Export Citation Format

Share Document