Model Checking Properties of Multi-agent Systems with Imperfect Information and Imperfect Recall

Author(s):  
Jerzy Pilecki ◽  
Marek A. Bednarczyk ◽  
Wojciech Jamroga
Author(s):  
Francesco Belardinelli ◽  
Alessio Lomuscio ◽  
Aniello Murano ◽  
Sasha Rubin

We study a class of synchronous, perfect-recall multi-agent systemswith imperfect information and broadcasting (i.e., fully observableactions). We define an epistemic extension of strategy logic withincomplete information and the assumption of uniform and coherentstrategies. In this setting, we prove that the model checking problem,and thus rational synthesis, is decidable with non-elementarycomplexity. We exemplify the applicability of the framework on arational secret-sharing scenario.


Author(s):  
Francesco Belardinelli ◽  
Alessio Lomuscio ◽  
Aniello Murano ◽  
Sasha Rubin

We develop a logic-based technique to analyse finite interactions in multi-agent systems. We introduce a semantics for Alternating-time Temporal Logic (for both perfect and imperfect recall) and its branching-time fragments in which paths are finite instead of infinite.  We study validities of these logics and present optimal algorithms for their model-checking problems in the perfect recall case.


2021 ◽  
Vol 35 (2) ◽  
Author(s):  
Yehia Abd Alrahman ◽  
Nir Piterman

AbstractWe propose a formalism to model and reason about reconfigurable multi-agent systems. In our formalism, agents interact and communicate in different modes so that they can pursue joint tasks; agents may dynamically synchronize, exchange data, adapt their behaviour, and reconfigure their communication interfaces. Inspired by existing multi-robot systems, we represent a system as a set of agents (each with local state), executing independently and only influence each other by means of message exchange. Agents are able to sense their local states and partially their surroundings. We extend ltl to be able to reason explicitly about the intentions of agents in the interaction and their communication protocols. We also study the complexity of satisfiability and model-checking of this extension.


2020 ◽  
Vol 34 (05) ◽  
pp. 7071-7078
Author(s):  
Francesco Belardinelli ◽  
Alessio Lomuscio ◽  
Emily Yu

We study the problem of verifying multi-agent systems under the assumption of bounded recall. We introduce the logic CTLKBR, a bounded-recall variant of the temporal-epistemic logic CTLK. We define and study the model checking problem against CTLK specifications under incomplete information and bounded recall and present complexity upper bounds. We present an extension of the BDD-based model checker MCMAS implementing model checking under bounded recall semantics and discuss the experimental results obtained.


2008 ◽  
Vol 195 ◽  
pp. 133-149
Author(s):  
Mario Benevides ◽  
Carla Delgado ◽  
Carlos Pombo ◽  
Luis Lopes ◽  
Ricardo Ribeiro

Sign in / Sign up

Export Citation Format

Share Document