Simple Differential Field Extensions and Effective Bounds

Author(s):  
James Freitag ◽  
Wei Li
Author(s):  
Matthias Aschenbrenner ◽  
Lou van den Dries ◽  
Joris van der Hoeven

This chapter deals with valued differential fields, starting the discussion with an overview of the asymptotic behavior of the function vsubscript P: Γ‎ → Γ‎ for homogeneous P ∈ K K{Y}superscript Not Equal To. The chapter then shows that the derivation of any valued differential field extension of K that is algebraic over K is also small. It also explains how differential field extensions of the residue field k give rise to valued differential field extensions of K with small derivation and the same value group. Finally, it discusses asymptotic couples, dominant part, the Equalizer Theorem, pseudocauchy sequences, and the construction of canonical immediate extensions.


2001 ◽  
Vol 27 (4) ◽  
pp. 201-214 ◽  
Author(s):  
Alexander B. Levin

We introduce a special type of reduction in the ring of differential polynomials and develop the appropriate technique of characteristic sets that allows to generalize the classical Kolchin's theorem on differential dimension polynomial and find new differential birational invariants of a finitely generated differential field extension.


Sign in / Sign up

Export Citation Format

Share Document