residue field
Recently Published Documents


TOTAL DOCUMENTS

204
(FIVE YEARS 39)

H-INDEX

12
(FIVE YEARS 1)

Author(s):  
José F. Fernando

AbstractA classical problem in real geometry concerns the representation of positive semidefinite elements of a ring A as sums of squares of elements of A. If A is an excellent ring of dimension $$\ge 3$$ ≥ 3 , it is already known that it contains positive semidefinite elements that cannot be represented as sums of squares in A. The one dimensional local case has been afforded by Scheiderer (mainly when its residue field is real closed). In this work we focus on the 2-dimensional case and determine (under some mild conditions) which local excellent henselian rings A of embedding dimension 3 have the property that every positive semidefinite element of A is a sum of squares of elements of A.


Author(s):  
Rosario Mennuni

We study the monoid of global invariant types modulo domination-equivalence in the context of o-minimal theories. We reduce its computation to the problem of proving that it is generated by classes of [Formula: see text]-types. We show this to hold in Real Closed Fields, where generators of this monoid correspond to invariant convex subrings of the monster model. Combined with [C. Ealy, D. Haskell and J. Maríková, Residue field domination in real closed valued fields, Notre Dame J. Formal Logic 60(3) (2019) 333–351], this allows us to compute the domination monoid in the weakly o-minimal theory of Real Closed Valued Fields.


Mathematics ◽  
2021 ◽  
Vol 9 (16) ◽  
pp. 1878
Author(s):  
José Gómez-Torrecillas ◽  
F. J. Lobillo ◽  
Gabriel Navarro

We design a decoding algorithm for linear codes over finite chain rings given by their parity check matrices. It is assumed that decoding algorithms over the residue field are known at each degree of the adic decomposition.


Author(s):  
Moshe Kamensky ◽  
Sergei Starchenko ◽  
Jinhe Ye

Abstract We consider G, a linear algebraic group defined over $\Bbbk $ , an algebraically closed field (ACF). By considering $\Bbbk $ as an embedded residue field of an algebraically closed valued field K, we can associate to it a compact G-space $S^\mu _G(\Bbbk )$ consisting of $\mu $ -types on G. We show that for each $p_\mu \in S^\mu _G(\Bbbk )$ , $\mathrm {Stab}^\mu (p)=\mathrm {Stab}\left (p_\mu \right )$ is a solvable infinite algebraic group when $p_\mu $ is centered at infinity and residually algebraic. Moreover, we give a description of the dimension of $\mathrm {Stab}\left (p_\mu \right )$ in terms of the dimension of p.


2021 ◽  
pp. 1-18
Author(s):  
BENJAMIN BRIGGS ◽  
ELOÍSA GRIFO ◽  
JOSH POLLITZ

Abstract A local ring R is regular if and only if every finitely generated R-module has finite projective dimension. Moreover, the residue field k is a test module: R is regular if and only if k has finite projective dimension. This characterization can be extended to the bounded derived category $\mathsf {D}^{\mathsf f}(R)$ , which contains only small objects if and only if R is regular. Recent results of Pollitz, completing work initiated by Dwyer–Greenlees–Iyengar, yield an analogous characterization for complete intersections: R is a complete intersection if and only if every object in $\mathsf {D}^{\mathsf f}(R)$ is proxy small. In this paper, we study a return to the world of R-modules, and search for finitely generated R-modules that are not proxy small whenever R is not a complete intersection. We give an algorithm to construct such modules in certain settings, including over equipresented rings and Stanley–Reisner rings.


2021 ◽  
Vol 29 (2) ◽  
pp. 25-50
Author(s):  
C. A. Castillo-Guillén ◽  
C. Álvarez-García

Abstract Over finite local Frobenius non-chain rings of length 5 and nilpotency index 4 and when the length of the code is relatively prime to the characteristic of the residue field of the ring, the structure of the dual of γ-constacyclic codes is established and the algebraic characterization of self-dual, reversible γ-constacyclic codes and γ-constacyclic codes with complementary dual are given.


2021 ◽  
Vol 27 (2) ◽  
pp. 222-223
Author(s):  
Pierre Touchard

AbstractIn this thesis, we study transfer principles in the context of certain Henselian valued fields, namely Henselian valued fields of equicharacteristic $0$ , algebraically closed valued fields, algebraically maximal Kaplansky valued fields, and unramified mixed characteristic Henselian valued fields with perfect residue field. First, we compute the burden of such a valued field in terms of the burden of its value group and its residue field. The burden is a cardinal related to the model theoretic complexity and a notion of dimension associated to $\text {NTP}_2$ theories. We show, for instance, that the Hahn field $\mathbb {F}_p^{\text {alg}}((\mathbb {Z}[1/p]))$ is inp-minimal (of burden 1), and that the ring of Witt vectors $W(\mathbb {F}_p^{\text {alg}})$ over $\mathbb {F}_p^{\text {alg}}$ is not strong (of burden $\omega $ ). This result extends previous work by Chernikov and Simon and realizes an important step toward the classification of Henselian valued fields of finite burden. Second, we show a transfer principle for the property that all types realized in a given elementary extension are definable. It can be written as follows: a valued field as above is stably embedded in an elementary extension if and only if its value group is stably embedded in the corresponding extension of value groups, its residue field is stably embedded in the corresponding extension of residue fields, and the extension of valued fields satisfies a certain algebraic condition. We show, for instance, that all types over the power series field $\mathbb {R}((t))$ are definable. Similarly, all types over the quotient field of $W(\mathbb {F}_p^{\text {alg}})$ are definable. This extends previous work of Cubides and Delon and of Cubides and Ye.These distinct results use a common approach, which has been developed recently. It consists of establishing first a reduction to an intermediate structure called the leading term structure, or $\operatorname {\mathrm {RV}}$ -sort, and then of reducing to the value group and residue field. This leads us to develop similar reduction principles in the context of pure short exact sequences of abelian groups.Abstract prepared by Pierre Touchard.E-mail: [email protected]: https://miami.uni-muenster.de/Record/a612cf73-0a2f-42c4-b1e4-7d28934138a9


Author(s):  
Kay Rülling ◽  
Shuji Saito

Abstract We define a motivic conductor for any presheaf with transfers F using the categorical framework developed for the theory of motives with modulus by Kahn, Miyazaki, Saito and Yamazaki. If F is a reciprocity sheaf, this conductor yields an increasing and exhaustive filtration on $F(L)$ , where L is any henselian discrete valuation field of geometric type over the perfect ground field. We show that if F is a smooth group scheme, then the motivic conductor extends the Rosenlicht–Serre conductor; if F assigns to X the group of finite characters on the abelianised étale fundamental group of X, then the motivic conductor agrees with the Artin conductor defined by Kato and Matsuda; and if F assigns to X the group of integrable rank $1$ connections (in characteristic $0$ ), then it agrees with the irregularity. We also show that this machinery gives rise to a conductor for torsors under finite flat group schemes over the base field, which we believe to be new. We introduce a general notion of conductors on presheaves with transfers and show that on a reciprocity sheaf, the motivic conductor is minimal and any conductor which is defined only for henselian discrete valuation fields of geometric type with perfect residue field can be uniquely extended to all such fields without any restriction on the residue field. For example, the Kato–Matsuda Artin conductor is characterised as the canonical extension of the classical Artin conductor defined in the case of a perfect residue field.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Nariel Monteiro

Abstract Let O 2 \mathcal{O}_{2} and O 2 ′ \mathcal{O}^{\prime}_{2} be two distinct finite local rings of length two with residue field of characteristic 𝑝. Let G ⁢ ( O 2 ) \mathbb{G}(\mathcal{O}_{2}) and G ⁢ ( O 2 ′ ) \mathbb{G}(\mathcal{O}^{\prime}_{2}) be the groups of points of any reductive group scheme 𝔾 over ℤ such that 𝑝 is very good for G × F q \mathbb{G}\times\mathbb{F}_{q} or G = GL n \mathbb{G}=\operatorname{GL}_{n} . We prove that there exists an isomorphism of group algebras K ⁢ G ⁢ ( O 2 ) ≅ K ⁢ G ⁢ ( O 2 ′ ) K\mathbb{G}(\mathcal{O}_{2})\cong K\mathbb{G}(\mathcal{O}^{\prime}_{2}) , where 𝐾 is a sufficiently large field of characteristic different from 𝑝.


Sign in / Sign up

Export Citation Format

Share Document