Two-Stage Heuristic Approach for Solving the Long-Term Unit Commitment Problem with Hydro-Thermal Coordination

Author(s):  
Alexander Franz ◽  
Julia Rieck ◽  
Jürgen Zimmermann
2019 ◽  
Vol 137 ◽  
pp. 01012
Author(s):  
Sylwia Gotzman ◽  
Paweł Ziόłkowski ◽  
Janusz Badur

An increasing share of the weather-dependent RES generation in the power system leads to the growing importance of flexibility of conventional power plants. They were usually designed for base load operation and it is a challenge to determine the actual long-term cycling costs, which account for an increase in maintenance and overhaul expenditures, increased forced outage rates and shortened life expectancy of the plant and components. In this paper, the overall impact of start up costs is evaluated by formulating and solving price based unit commitment problem (PBUC). The electricity spot market is considered as a measure for remunerating flexibility. This approach is applied to a real-life case study based on the 70 MWe PGE Gorzόw CCGT power plant. Different operation modes are calculated and results are used to derive a mixed integer linear programming (MILP) model to optimize the operation of the plant. The developed mathematical model is implemented in Python within the frame of the PuLP library and solved using GUROBI. Results of the application of the method to a numerical example are presented.


Author(s):  
Rachid Habachi ◽  
Achraf Touil ◽  
Abdelkabir Charkaoui ◽  
Abdelwahed Echchatbi

<p>Eagle strategy is a two-stage optimization strategy, which is inspired by the observation of the hunting behavior of eagles in nature. In this two-stage strategy, the first stage explores the search space globally by using a Levy flight; if it finds a promising solution, then an intensive local search is employed using a more efficient local optimizer, such as hillclimbing and the downhill simplex method. Then, the two-stage process starts again with new global exploration, followed by a local search in a new region. One of the remarkable advantages of such a combina-tion is to use a balanced tradeoff between global search (which is generally slow) and a rapid local search. The crow search algorithm (CSA) is a recently developed metaheuristic search algorithm inspired by the intelligent behavior of crows.This research article integrates the crow search algorithm as a local optimizer of Eagle strategy to solve unit commitment (UC) problem. The Unit commitment problem (UCP) is mainly finding the minimum cost schedule to a set of generators by turning each one either on or off over a given time horizon to meet the demand load and satisfy different operational constraints. There are many constraints in unit commitment problem such as spinning reserve, minimum up/down, crew, must run and fuel constraints. The proposed strategy ES-CSA is tested on 10 to 100 unit systems with a 24-h scheduling horizon. The effectiveness of the proposed strategy is compared with other well-known evolutionary, heuristics and meta-heuristics search algorithms, and by reported numerical results, it has been found that proposed strategy yields global results for the solution of the unit commitment problem.</p><p> </p>


2018 ◽  
Vol 274 (1-2) ◽  
pp. 241-265 ◽  
Author(s):  
Alexander Franz ◽  
Julia Rieck ◽  
Jürgen Zimmermann

2012 ◽  
Vol 210 (1) ◽  
pp. 387-410 ◽  
Author(s):  
Qipeng P. Zheng ◽  
Jianhui Wang ◽  
Panos M. Pardalos ◽  
Yongpei Guan

Sign in / Sign up

Export Citation Format

Share Document