For a modern vehicle, if the sensor in a vehicle anti-lock braking system (ABS) or controller area network (CAN) bus is attacked during a brake process, the vehicle will lose driving direction control and the driver’s life will be highly threatened. However, current methods for detecting attacks are not sufficiently accurate, and no method can provide attack mitigation. To ensure vehicle ABS security, we propose an attack detection method to accurately detect both sensor attack (SA) and CAN bus attack in a vehicle ABS, and an attack mitigation strategy to mitigate their negative effects on the vehicle ABS. In our attack detection method, we build a vehicle state space equation that considers the real-time road friction coefficient to predict vehicle states (i.e., wheel speed and longitudinal brake force) with their previous values. Based on sets of historical measured vehicle states, we develop a search algorithm to find out attack changes (vehicle state changes because of attack) by minimizing errors between the predicted vehicle states and the measured vehicle states. In our attack mitigation strategy, attack changes are subtracted from the measured vehicle states to generate correct vehicle states for a vehicle ABS. We conducted the first real SA experiments to show how a magnet affects sensor readings. Our simulation results demonstrate that our attack detection method can detect SA and CAN bus attack more accurately compared with existing methods, and also that our attack mitigation strategy almost eliminates the attack’s effects on a vehicle ABS.