The Hyperbolic Metric on the Complement of the Integer Lattice Points in the Plane

Author(s):  
Katsuhiko Matsuzaki
2016 ◽  
Vol 3 (1) ◽  
Author(s):  
Roberto Mossa

AbstractLet f : Y → X be a continuous map between a compact real analytic Kähler manifold (Y, g) and a compact complex hyperbolic manifold (X, g0). In this paper we give a lower bound of the diastatic entropy of (Y, g) in terms of the diastatic entropy of (X, g0) and the degree of f . When the lower bound is attained we get geometric rigidity theorems for the diastatic entropy analogous to the ones obtained by G. Besson, G. Courtois and S. Gallot [2] for the volume entropy. As a corollary,when X = Y,we get that the minimal diastatic entropy is achieved if and only if g is isometric to the hyperbolic metric g0.


Mathematics ◽  
2020 ◽  
Vol 8 (8) ◽  
pp. 1310
Author(s):  
Liang Shen

Suppose that h(z) is a harmonic mapping from the unit disk D to itself with respect to the hyperbolic metric. If the Hopf differential of h(z) is a constant c>0, the Beltrami coefficient μ(z) of h(z) is radially symmetric and takes the maximum at z=0. Furthermore, the mapping γ:c→μ(0) is increasing and gives a homeomorphism from (0,+∞) to (0,1).


1997 ◽  
Vol 49 (1) ◽  
pp. 55-73 ◽  
Author(s):  
Huaihui Chen ◽  
Paul M. Gauthier

AbstractFor ameromorphic (or harmonic) function ƒ, let us call the dilation of ƒ at z the ratio of the (spherical)metric at ƒ(z) and the (hyperbolic)metric at z. Inequalities are knownwhich estimate the sup norm of the dilation in terms of its Lp norm, for p > 2, while capitalizing on the symmetries of ƒ. In the present paper we weaken the hypothesis by showing that such estimates persist even if the Lp norms are taken only over the set of z on which ƒ takes values in a fixed spherical disk. Naturally, the bigger the disk, the better the estimate. Also, We give estimates for holomorphic functions without zeros and for harmonic functions in the case that p = 2.


Mathematika ◽  
2009 ◽  
Vol 56 (1) ◽  
pp. 118-134 ◽  
Author(s):  
Hyunsuk Kang ◽  
Alexander V. Sobolev

1977 ◽  
Vol 82 (2) ◽  
pp. 265-268 ◽  
Author(s):  
E. S. Barnes ◽  
Michael Mather

Let Zn denote the integer lattice in Rn, let A be a non-singular n × n matrix and ʗ ∈ Rn. Then G = AZn + ʗ is called a grid (non-homogeneous lattice) and its determinant det G is defined to be |det A|.


Sign in / Sign up

Export Citation Format

Share Document