Normal Functions: Lp Estimates

1997 ◽  
Vol 49 (1) ◽  
pp. 55-73 ◽  
Author(s):  
Huaihui Chen ◽  
Paul M. Gauthier

AbstractFor ameromorphic (or harmonic) function ƒ, let us call the dilation of ƒ at z the ratio of the (spherical)metric at ƒ(z) and the (hyperbolic)metric at z. Inequalities are knownwhich estimate the sup norm of the dilation in terms of its Lp norm, for p > 2, while capitalizing on the symmetries of ƒ. In the present paper we weaken the hypothesis by showing that such estimates persist even if the Lp norms are taken only over the set of z on which ƒ takes values in a fixed spherical disk. Naturally, the bigger the disk, the better the estimate. Also, We give estimates for holomorphic functions without zeros and for harmonic functions in the case that p = 2.

2020 ◽  
Vol 30 (5) ◽  
Author(s):  
Sirkka-Liisa Eriksson ◽  
Terhi Kaarakka

Abstract We study harmonic functions with respect to the Riemannian metric $$\begin{aligned} ds^{2}=\frac{dx_{1}^{2}+\cdots +dx_{n}^{2}}{x_{n}^{\frac{2\alpha }{n-2}}} \end{aligned}$$ d s 2 = d x 1 2 + ⋯ + d x n 2 x n 2 α n - 2 in the upper half space $$\mathbb {R}_{+}^{n}=\{\left( x_{1},\ldots ,x_{n}\right) \in \mathbb {R}^{n}:x_{n}>0\}$$ R + n = { x 1 , … , x n ∈ R n : x n > 0 } . They are called $$\alpha $$ α -hyperbolic harmonic. An important result is that a function f is $$\alpha $$ α -hyperbolic harmonic íf and only if the function $$g\left( x\right) =x_{n}^{-\frac{ 2-n+\alpha }{2}}f\left( x\right) $$ g x = x n - 2 - n + α 2 f x is the eigenfunction of the hyperbolic Laplace operator $$\bigtriangleup _{h}=x_{n}^{2}\triangle -\left( n-2\right) x_{n}\frac{\partial }{\partial x_{n}}$$ △ h = x n 2 ▵ - n - 2 x n ∂ ∂ x n corresponding to the eigenvalue $$\ \frac{1}{4}\left( \left( \alpha +1\right) ^{2}-\left( n-1\right) ^{2}\right) =0$$ 1 4 α + 1 2 - n - 1 2 = 0 . This means that in case $$\alpha =n-2$$ α = n - 2 , the $$n-2$$ n - 2 -hyperbolic harmonic functions are harmonic with respect to the hyperbolic metric of the Poincaré upper half-space. We are presenting some connections of $$\alpha $$ α -hyperbolic functions to the generalized hyperbolic Brownian motion. These results are similar as in case of harmonic functions with respect to usual Laplace and Brownian motion.


1975 ◽  
Vol 56 ◽  
pp. 1-5
Author(s):  
Masaru Hara

Given a harmonic function u on a Riemann surface R, we define a period functionfor every one-dimensional cycle γ of the Riemann surface R. Γx(R) denote the totality of period functions Γu such that harmonic functions u satisfy a boundedness property X. As for X, we let B stand for boundedness, and D for the finiteness of the Dirichlet integral.


2012 ◽  
Vol 2012 ◽  
pp. 1-8
Author(s):  
M. T. Mustafa

For Riemannian manifoldsMandN, admitting a submersionϕwith compact fibres, we introduce the projection of a function via its decomposition into horizontal and vertical components. By comparing the Laplacians onMandN, we determine conditions under which a harmonic function onU=ϕ−1(V)⊂Mprojects down, via its horizontal component, to a harmonic function onV⊂N.


2003 ◽  
Vol DMTCS Proceedings vol. AC,... (Proceedings) ◽  
Author(s):  
Anders Karlsson

International audience We obtain a new result concerning harmonic functions on infinite Cayley graphs $X$: either every nonconstant harmonic function has infinite radial variation in a certain uniform sense, or there is a nontrivial boundary with hyperbolic properties at infinity of $X$. In the latter case, relying on a theorem of Woess, it follows that the Dirichlet problem is solvable with respect to this boundary. Certain relations to group cohomology are also discussed.


2016 ◽  
Vol 3 (1) ◽  
Author(s):  
Roberto Mossa

AbstractLet f : Y → X be a continuous map between a compact real analytic Kähler manifold (Y, g) and a compact complex hyperbolic manifold (X, g0). In this paper we give a lower bound of the diastatic entropy of (Y, g) in terms of the diastatic entropy of (X, g0) and the degree of f . When the lower bound is attained we get geometric rigidity theorems for the diastatic entropy analogous to the ones obtained by G. Besson, G. Courtois and S. Gallot [2] for the volume entropy. As a corollary,when X = Y,we get that the minimal diastatic entropy is achieved if and only if g is isometric to the hyperbolic metric g0.


1948 ◽  
Vol 44 (2) ◽  
pp. 289-291 ◽  
Author(s):  
S. Verblunsky

If H(ξ, η) is a harmonic function which is defined and positive in η > 0, then there is a non-negative number D and a bounded non-decreasing function G(x) such that(For a proof, see Loomis and Widder, Duke Math. J. 9 (1942), 643–5.) If we writewhere λ > 1, then the equationdefines a harmonic function h which is positive in υ > 0. Hence there is a non-negative number d and a bounded non-decreasing function g(x) such thatThe problem of finding the connexion between the functions G(x) and g(x) has been mentioned by Loomis (Trans. American Math. Soc. 53 (1943), 239–50, 244).


Sign in / Sign up

Export Citation Format

Share Document