real analytic
Recently Published Documents


TOTAL DOCUMENTS

759
(FIVE YEARS 88)

H-INDEX

30
(FIVE YEARS 2)

Author(s):  
David Nicolas Prinz ◽  
Alexander Schmeding

Abstract We study the Lie group structure of asymptotic symmetry groups in General Relativity from the viewpoint of infinite-dimensional geometry. To this end, we review the geometric definition of asymptotic simplicity and emptiness due to Penrose and the coordinate-wise definition of asymptotic flatness due to Bondi et al. Then we construct the Lie group structure of the Bondi--Metzner--Sachs (BMS) group and discuss its Lie theoretic properties. We find that the BMS group is regular in the sense of Milnor, but not real analytic. This motivates us to conjecture that it is not locally exponential. Finally, we verify the Trotter property as well as the commutator property. As an outlook, we comment on the situation of related asymptotic symmetry groups. In particular, the much more involved situation of the Newman--Unti group is highlighted, which will be studied in future work.


Author(s):  
M. Berraho

In this paper, we first try to solve the following problem: If a pluriharmonic function $f$ is definable in an arbitrary o-minimal expansion of the structure of the real field $\overline{\mathbb{R}}:=(\mathbb{R},+,-,.,0,1,<)$, does this function be locally the real part of a holomorphic function which is definable in the same expansion? In Proposition 2.1 below, we prove that this problem has a positive answer if the Weierstrass division theorem holds true for the system of the rings of real analytic definable germs at the origin of $\mathbb{R}^n$. We obtain the same answer for an o-minimal expansion of the real field which is pfaffian closed (Proposition 2.6) for the harmonic functions. In the last section, we are going to show that the Weierstrass division theorem does not hold true for the rings of germs of real analytic functions at $0\in\mathbb{R}^n$ which are definable in the o-minimal structure $(\overline{\mathbb{R}}, x^{\alpha_1},\ldots,x^{\alpha_p})$, here $\alpha_1,\ldots,\alpha_p$ are irrational real numbers.


2021 ◽  
Vol 77 (1) ◽  
Author(s):  
Luis Bernal-González ◽  
María del Carmen Calderón-Moreno ◽  
Andreas Jung

AbstractIn this note, a vector space of real-analytic functions on the plane is explicitly constructed such that all its nonzero functions are non-integrable but yet their two iterated integrals exist as real numbers and coincide. Moreover, it is shown that this vector space is dense in the space of all real continuous functions on the plane endowed with the compact-open topology.


Author(s):  
Steven Charlton ◽  
◽  
Claude Duhr ◽  
Herbert Gangl ◽  
◽  
...  

We define a variant of real-analytic polylogarithms that are single-valued and that satisfy ''clean'' functional relations that do not involve any products of lower weight functions. We discuss the basic properties of these functions and, for depths one and two, we present some explicit formulas and results. We also give explicit formulas for the single-valued and clean single-valued version attached to the Nielsen polylogarithms Sn,2(x), and we show how the clean single-valued functions give new evaluations of multiple polylogarithms at certain algebraic points.


2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
Ioseph Buchbinder ◽  
Evgeny Ivanov ◽  
Nikita Zaigraev

Abstract We present, for the first time, the complete off-shell 4D,$$ \mathcal{N} $$ N = 2 superfield actions for any free massless integer spin s ≥ 2 fields, using the $$ \mathcal{N} $$ N = 2 harmonic super-space approach. The relevant gauge supermultiplet is accommodated by two real analytic bosonic superfields $$ {h}_{\alpha \left(s-1\right)\dot{\alpha}\left(s-1\right)}^{++} $$ h α s − 1 α ̇ s − 1 + + , $$ {h}_{\alpha \left(s-2\right)\dot{\alpha}\left(s-2\right)}^{++} $$ h α s − 2 α ̇ s − 2 + + and two conjugated complex analytic spinor superfields $$ {h}_{\alpha \left(s-1\right)\dot{\alpha}\left(s-1\right)}^{+3} $$ h α s − 1 α ̇ s − 1 + 3 , $$ {h}_{\alpha \left(s-2\right)\dot{\alpha}\left(s-1\right)}^{+3} $$ h α s − 2 α ̇ s − 1 + 3 , where α(s) := (α1. . . αs),$$ \dot{\alpha} $$ α ̇ (s) := ($$ \dot{\alpha} $$ α ̇ 1. . .$$ \dot{\alpha} $$ α ̇ s). Like in the harmonic superspace formulations of $$ \mathcal{N} $$ N = 2 Maxwell and supergravity theories, an infinite number of original off-shell degrees of freedom is reduced to the finite set (in WZ-type gauge) due to an infinite number of the component gauge parameters in the analytic superfield parameters. On shell, the standard spin content (s,s−1/2,s−1/2,s−1) is restored. For s = 2 the action describes the linearized version of “minimal” $$ \mathcal{N} $$ N = 2 Einstein supergravity.


Author(s):  
Peter Hearnshaw ◽  
Alexander V. Sobolev

AbstractIt is proved that the one-particle density matrix $$\gamma (x, y)$$ γ ( x , y ) for multi-particle Coulombic systems is real analytic away from the nuclei and from the diagonal $$x = y$$ x = y .


Author(s):  
Ivo Slegers

AbstractWe consider harmonic maps into symmetric spaces of non-compact type that are equivariant for representations that induce a free and proper action on the symmetric space. We show that under suitable non-degeneracy conditions such equivariant harmonic maps depend in a real analytic fashion on the representation they are associated to. The main tool in the proof is the construction of a family of deformation maps which are used to transform equivariant harmonic maps into maps mapping into a fixed target space so that a real analytic version of the results in [4] can be applied.


2021 ◽  
Vol 8 (4) ◽  
Author(s):  
Mikko Salo ◽  
Henrik Shahgholian

AbstractWe study a question arising in inverse scattering theory: given a penetrable obstacle, does there exist an incident wave that does not scatter? We show that every penetrable obstacle with real-analytic boundary admits such an incident wave. At zero frequency, we use quadrature domains to show that there are also obstacles with inward cusps having this property. In the converse direction, under a nonvanishing condition for the incident wave, we show that there is a dichotomy for boundary points of any penetrable obstacle having this property: either the boundary is regular, or the complement of the obstacle has to be very thin near the point. These facts are proved by invoking results from the theory of free boundary problems.


Sign in / Sign up

Export Citation Format

Share Document