Early Experiments with Modern Mathematics in Belgium. Advanced Mathematics Taught from Childhood?

Author(s):  
Dirk De Bock ◽  
Geert Vanpaemel
Author(s):  
José Ferreirós

This chapter proposes the idea that advanced mathematics is based on hypotheses—that far from being a priori, it is based on hypothetical assumptions. The concept of quasi-empiricism is often linked with the view that inductive methods are at play when the hypotheses are established. The presence of hypotheses at the very heart of mathematics establishes an important similitude with physical theory and undermines the simple distinction between “formal” and “empirical” sciences. The chapter first elaborates on a hypothetical conception of mathematics before discussing the ideas (and ideals) of certainty and objectivity in mathematics. It then considers the modern problems of the continuum that exist in ancient Greek geometry, along with the so-called methodological platonism of modern mathematics and its focus on mathematical objects. Finally, it describes the Axiom of Completeness and the Riemann Hypothesis.


Author(s):  
José Ferreirós

This book presents a new approach to the epistemology of mathematics by viewing mathematics as a human activity whose knowledge is intimately linked with practice. Charting an exciting new direction in the philosophy of mathematics, the book uses the crucial idea of a continuum to provide an account of the development of mathematical knowledge that reflects the actual experience of doing math and makes sense of the perceived objectivity of mathematical results. Describing a historically oriented, agent-based philosophy of mathematics, the book shows how the mathematical tradition evolved from Euclidean geometry to the real numbers and set-theoretic structures. It argues for the need to take into account a whole web of mathematical and other practices that are learned and linked by agents, and whose interplay acts as a constraint. It demonstrates how advanced mathematics, far from being a priori, is based on hypotheses, in contrast to elementary math, which has strong cognitive and practical roots and therefore enjoys certainty. Offering a wealth of philosophical and historical insights, the book challenges us to rethink some of our most basic assumptions about mathematics, its objectivity, and its relationship to culture and science.


Author(s):  
Lisa Shabel

The state of modern mathematical practice called for a modern philosopher of mathematics to answer two interrelated questions. Given that mathematical ontology includes quantifiable empirical objects, how to explain the paradigmatic features of pure mathematical reasoning: universality, certainty, necessity. And, without giving up the special status of pure mathematical reasoning, how to explain the ability of pure mathematics to come into contact with and describe the empirically accessible natural world. The first question comes to a demand for apriority: a viable philosophical account of early modern mathematics must explain the apriority of mathematical reasoning. The second question comes to a demand for applicability: a viable philosophical account of early modern mathematics must explain the applicability of mathematical reasoning. This article begins by providing a brief account of a relevant aspect of early modern mathematical practice, in order to situate philosophers in their historical and mathematical context.


1964 ◽  
Vol 15 (3) ◽  
pp. 67-68
Author(s):  
R O Gibson
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document