2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Joshua Males ◽  
Andreas Mono ◽  
Larry Rolen

Abstract In the theory of harmonic Maaß forms and mock modular forms, mock theta functions are distinguished examples which arose from q-hypergeometric examples of Ramanujan. Recently, there has been a body of work on higher depth mock modular forms. Here, we introduce distinguished examples of these forms, which we call higher depth mock theta functions, and develop q-hypergeometric expressions for them. We provide three examples of mock theta functions of depth two, each arising by multiplying a classical mock theta function with a certain specialization of a universal mock theta function. In addition, we give their modular completions, and relate each to a q-hypergeometric series.


10.37236/1703 ◽  
2003 ◽  
Vol 10 (1) ◽  
Author(s):  
Michael Schlosser

We present a new matrix inverse with applications in the theory of bilateral basic hypergeometric series. Our matrix inversion result is directly extracted from an instance of Bailey's very-well-poised ${}_6\psi_6$ summation theorem, and involves two infinite matrices which are not lower-triangular. We combine our bilateral matrix inverse with known basic hypergeometric summation theorems to derive, via inverse relations, several new identities for bilateral basic hypergeometric series.


2019 ◽  
Vol 23 (3-4) ◽  
pp. 561-572
Author(s):  
Gaurav Bhatnagar ◽  
Michael J. Schlosser

Abstract We present an infinite family of Borwein type $$+ - - $$+-- conjectures. The expressions in the conjecture are related to multiple basic hypergeometric series with Macdonald polynomial argument.


Sign in / Sign up

Export Citation Format

Share Document