scholarly journals Algorithms in Digital Geometry Based on Cellular Topology

Author(s):  
V. Kovalevsky
Author(s):  
Carolyn Conner Seepersad ◽  
Janet K. Allen ◽  
David L. McDowell ◽  
Farrokh Mistree

Prismatic cellular or honeycomb materials exhibit favorable properties for multifunctional applications such as ultra-light load bearing combined with active cooling. Since these properties are strongly dependent on the underlying cellular structure, design methods are needed for tailoring cellular topologies with customized multifunctional properties that may be unattainable with standard cell designs. Topology optimization methods are available for synthesizing the form of a cellular structure—including the size, shape, and connectivity of cell walls and the number, shape, and arrangement of cell openings—rather than specifying these features a priori. To date, the application of these methods for cellular materials design has been limited primarily to elastic and thermo-elastic properties, however, and limitations of standard topology optimization methods prevent direct application to many other phenomena such as conjugate heat transfer with internal convection. In this paper, we introduce a practical, two-stage, flexibility-based, multifunctional topology design approach for applications that require customized multifunctional properties. As part of the approach, robust topology design methods are used to design flexible cellular topology with customized structural properties. Dimensional and topological flexibility is embodied in the form of robust ranges of cell wall dimensions and robust permutations of a nominal cellular topology. The flexibility is used to improve the heat transfer characteristics of the design via addition/removal of cell walls and adjustment of cellular dimensions, respectively, without degrading structural performance. We apply the method to design stiff, actively cooled prismatic cellular materials for the combustor liners of next-generation gas turbine engines.


2008 ◽  
Vol 130 (3) ◽  
Author(s):  
Carolyn Conner Seepersad ◽  
Janet K. Allen ◽  
David L. McDowell ◽  
Farrokh Mistree

Prismatic cellular or honeycomb materials exhibit favorable properties for multifunctional applications such as ultralight load bearing combined with active cooling. Since these properties are strongly dependent on the underlying cellular structure, design methods are needed for tailoring cellular topologies with customized multifunctional properties. Topology optimization methods are available for synthesizing the form of a cellular structure—including the size, shape, and connectivity of cell walls and openings—rather than specifying these features a priori. To date, the application of these methods for cellular materials design has been limited primarily to elastic and thermoelastic properties, and limitations of classic topology optimization methods prevent a direct application to many other phenomena such as conjugate heat transfer with internal convection. In this paper, a practical, two-stage topology design approach is introduced for applications that require customized multifunctional properties. In the first stage, robust topology design methods are used to design flexible cellular topology with customized structural properties. Dimensional and topological flexibility is embodied in the form of robust ranges of cell wall dimensions and robust permutations of a nominal cellular topology. In the second design stage, the flexibility is used to improve the heat transfer characteristics of the design via addition/removal of cell walls and adjustment of cellular dimensions without degrading structural performance. The method is applied to design stiff, actively cooled prismatic cellular materials for the combustor liners of next-generation gas turbine engines.


1999 ◽  
Vol 10 (3) ◽  
pp. 266-280 ◽  
Author(s):  
R. Lin ◽  
S. Olariu ◽  
J.L. Schwing ◽  
B.-F. Wang

Author(s):  
Bill Dawes ◽  
Matt Hunt ◽  
Nabil Meah ◽  
Andrey Kudryavtsev ◽  
Rich Evans

Abstract The overall aim of the work reported in this paper is to explore whether a physics-based simulation approach has the potential to reduce the uncertainty & variability associated with both predicting & managing maintenance costs and improving engine design to optimise through-life economic performance. The main novelty in the paper is to demonstrate how an innovative Digital Geometry model can represent typical in-service component degradation and then support appropriate simulation meshes to permit degraded performance to be predicted. Two examples are given: blade erosion from particulates; and a simulated cooled blade burn-through event.


1988 ◽  
Vol 7 (4) ◽  
pp. 215-226 ◽  
Author(s):  
P.P. Das ◽  
B.N. Chatterji
Keyword(s):  

1994 ◽  
Vol 06 (04) ◽  
pp. 501-517 ◽  
Author(s):  
BORIVOJE DJOKIĆ ◽  
JIM RUPPERT ◽  
IVAN STOJMENOVIĆ

Sign in / Sign up

Export Citation Format

Share Document