cellular materials
Recently Published Documents


TOTAL DOCUMENTS

682
(FIVE YEARS 119)

H-INDEX

49
(FIVE YEARS 7)

2022 ◽  
Vol 208 ◽  
pp. 114361
Author(s):  
Josephine V. Carstensen ◽  
Reza Lotfi ◽  
Wen Chen ◽  
Stefan Szyniszewski ◽  
Stavros Gaitanaros ◽  
...  

2021 ◽  
pp. 100918
Author(s):  
Anton du Plessis ◽  
Seyed Mohammad Javad Razavi ◽  
Matteo Benedetti ◽  
Simone Murchio ◽  
Martin Leary ◽  
...  
Keyword(s):  

JOM ◽  
2021 ◽  
Author(s):  
Kaitlynn M. Conway ◽  
Zachary Romanick ◽  
Lea M. Cook ◽  
Luis A. Morales ◽  
Jonathan D. Despeaux ◽  
...  

Pharmaceutics ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1887
Author(s):  
Atanu Naskar ◽  
Hyejin Cho ◽  
Sohee Lee ◽  
Kwang-sun Kim

The biomedical field is currently reaping the benefits of research on biomimetic nanoparticles (NPs), which are synthetic nanoparticles fabricated with natural cellular materials for nature-inspired biomedical applications. These camouflage NPs are capable of retaining not only the physiochemical properties of synthetic nanoparticles but also the original biological functions of the cellular materials. Accordingly, NPs coated with cell-derived membrane components have achieved remarkable growth as prospective biomedical materials. Particularly, bacterial outer membrane vesicle (OMV), which is a cell membrane coating material for NPs, is regarded as an important molecule that can be employed in several biomedical applications, including immune response activation, cancer therapeutics, and treatment for bacterial infections with photothermal activity. The currently available cell membrane-coated NPs are summarized in this review. Furthermore, the general features of bacterial OMVs and several multifunctional NPs that could serve as inner core materials in the coating strategy are presented, and several methods that can be used to prepare OMV-coated NPs (OMV-NPs) and their characterization are highlighted. Finally, some perspectives of OMV-NPs in various biomedical applications for future potential breakthrough are discussed. This in-depth review, which includes potential challenges, will encourage researchers to fabricate innovative and improvised, new-generation biomimetic materials through future biomedical applications.


Polymers ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 3836
Author(s):  
Alberto Ballesteros ◽  
Ester Laguna-Gutiérrez ◽  
Miguel Ángel Rodríguez-Pérez

Different percentages of an elastomeric phase of styrene-ethylene-butylene-styrene (SEBS) were added to a polystyrene (PS) matrix to evaluate its nucleating effect in PS foams. It has been demonstrated that a minimum quantity of SEBS produces a high nucleation effect on the cellular materials that are produced. In particular, the results show that by adding 2% of SEBS, it is possible to reduce the cell size by 10 times while maintaining the density and open cell content of the foamed materials. The influence of this polymeric phase on the glass transition temperature (Tg) and the shear and extensional rheological properties has been studied to understand the foaming behavior. The results indicate a slight increase in the Tg and a decrease of the shear viscosity, extensional viscosity, and strain hardening coefficient as the percentage of SEBS increases. Consequently, an increase in the density and a deterioration of the cellular structure is detected for SEBS amounts higher than 3%.


Metals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1622
Author(s):  
Oraib Al-Ketan

The ability to control the exhibited plastic deformation behavior of cellular materials under certain loading conditions can be harnessed to design more reliable and structurally efficient damage-tolerant materials for crashworthiness and protective equipment applications. In this work, a mathematically-based design approach is proposed to program the deformation behavior of cellular materials with minimal surface-based topologies and ductile constituent material by employing the concept of functional grading to control the local relative density of unit cells. To demonstrate the applicability of this design tactic, two examples are presented. Rhombic, and double arrow deformation profiles were programmed as the desired deformation patterns. Grayscale images were used to map the relative density distribution of the cellular material. 316L stainless steel metallic samples were fabricated using the powder bed fusion additive manufacturing technique. Results of compressive tests showed that the designed materials followed the desired programmed deformation behavior. Results of mechanical testing also showed that samples with programmed deformation exhibited higher plateau stress and toughness values as compared to their uniform counterparts while no effect on Young’s modulus was observed. Plateau stress values increased by 8.6% and 13.4% and toughness values increased by 5.6% and 11.2% for the graded-rhombic and graded-arrow patterns, respectively. Results of numerical simulations predicted the exact deformation behavior that was programmed in the samples and that were obtained experimentally.


Sign in / Sign up

Export Citation Format

Share Document