Multifunctional Topology Design of Cellular Material Structures

2008 ◽  
Vol 130 (3) ◽  
Author(s):  
Carolyn Conner Seepersad ◽  
Janet K. Allen ◽  
David L. McDowell ◽  
Farrokh Mistree

Prismatic cellular or honeycomb materials exhibit favorable properties for multifunctional applications such as ultralight load bearing combined with active cooling. Since these properties are strongly dependent on the underlying cellular structure, design methods are needed for tailoring cellular topologies with customized multifunctional properties. Topology optimization methods are available for synthesizing the form of a cellular structure—including the size, shape, and connectivity of cell walls and openings—rather than specifying these features a priori. To date, the application of these methods for cellular materials design has been limited primarily to elastic and thermoelastic properties, and limitations of classic topology optimization methods prevent a direct application to many other phenomena such as conjugate heat transfer with internal convection. In this paper, a practical, two-stage topology design approach is introduced for applications that require customized multifunctional properties. In the first stage, robust topology design methods are used to design flexible cellular topology with customized structural properties. Dimensional and topological flexibility is embodied in the form of robust ranges of cell wall dimensions and robust permutations of a nominal cellular topology. In the second design stage, the flexibility is used to improve the heat transfer characteristics of the design via addition/removal of cell walls and adjustment of cellular dimensions without degrading structural performance. The method is applied to design stiff, actively cooled prismatic cellular materials for the combustor liners of next-generation gas turbine engines.

Author(s):  
Carolyn Conner Seepersad ◽  
Janet K. Allen ◽  
David L. McDowell ◽  
Farrokh Mistree

Prismatic cellular or honeycomb materials exhibit favorable properties for multifunctional applications such as ultra-light load bearing combined with active cooling. Since these properties are strongly dependent on the underlying cellular structure, design methods are needed for tailoring cellular topologies with customized multifunctional properties that may be unattainable with standard cell designs. Topology optimization methods are available for synthesizing the form of a cellular structure—including the size, shape, and connectivity of cell walls and the number, shape, and arrangement of cell openings—rather than specifying these features a priori. To date, the application of these methods for cellular materials design has been limited primarily to elastic and thermo-elastic properties, however, and limitations of standard topology optimization methods prevent direct application to many other phenomena such as conjugate heat transfer with internal convection. In this paper, we introduce a practical, two-stage, flexibility-based, multifunctional topology design approach for applications that require customized multifunctional properties. As part of the approach, robust topology design methods are used to design flexible cellular topology with customized structural properties. Dimensional and topological flexibility is embodied in the form of robust ranges of cell wall dimensions and robust permutations of a nominal cellular topology. The flexibility is used to improve the heat transfer characteristics of the design via addition/removal of cell walls and adjustment of cellular dimensions, respectively, without degrading structural performance. We apply the method to design stiff, actively cooled prismatic cellular materials for the combustor liners of next-generation gas turbine engines.


Author(s):  
Carolyn Conner Seepersad ◽  
Janet K. Allen ◽  
David L. McDowell ◽  
Farrokh Mistree

A robust topology exploration method is under development in which robust design techniques are extended to the early stages of a design process when a product’s layout or topology is determined. The performance of many designs is strongly influenced by both topology, or the geometric arrangement and connectivity of a design, and potential variations in factors such as the operating environment, the manufacturing process, and specifications of the design itself. While topology design and robust design are active research areas, little attention has been devoted to integrating the two categories of design methods. In this paper, we move toward a comprehensive robust topology exploration method by coupling robust design methods, namely, design capability indices with topology design techniques. The resulting design method facilitates efficient, effective realization of robust designs with complex topologies. The method is employed to design extruded cellular materials with robust, desirable elastic properties. For this class of materials, 2D cellular topologies are customizable and largely govern multifunctional performance. By employing robust, topological design methods, we obtain cellular material designs that are characterized by ranged sets of design specifications with topologies that reliably meet a set of design requirements and are relatively simple and robust to anticipated variability.


2021 ◽  
pp. 54-72
Author(s):  
Zheng Hu

According to the requirements of the aerospace industry for high strength, high stiffness, and lightweight structural parts, topology optimization has been proved to be an effective product design method. As one of the most conceptual and prospective structural optimization design methods, topology optimization intends to seek the optimal layout of materials in an allowed design region under a given load and boundary conditions. Thus, the object of study in the article is the method of topological optimization of aircraft structures. The goal of this article is to analyze the existing approaches, algorithms, as well as application of the method of topological optimization in the aerospace field in applied problems. The tasks are to describe the existing various approaches methods, features, and research directions of topological optimization as well as to study the possibility of application in the manufacturing process of composite structures. The following results were obtained. The optimization methods are briefly explained and compared, and the advantages and limitations of each approach are discussed. The various ways of simultaneous optimization of fiber orientation and structural topology were described and analyzed. The features of different methods of continuous fiber orientation optimization method were reviewed. The discrete fiber orientation optimization methods were represented. The possibility of multi-scale concurrent topological optimization was described. The combination of topology optimization and additive manufacturing was considered. Finally, the topology optimization of FRC structures which have been resolved in literature are reviewed and the potential research fields requiring more investigation are pointed out. Conclusions. In the article, a comprehensive review of the topology optimization design of FRC structures was presented. The promising way is to combine topology optimization with additive manufacturing techniques. However, these proposed methods may not suitable for other more complex problems, such as bucking stability and natural frequency. Hence, the topology optimization design of complex FRC components under complicated conditions is the main challenge in the future. This can be a new trend in the topology design of FRC structures.


2012 ◽  
Vol 466-467 ◽  
pp. 1212-1216
Author(s):  
San Bao Hu ◽  
Li Ping Chen ◽  
Yu Zhang ◽  
Ming Jiang

This paper presents an approach for solving the multidisciplinary topology optimization (MTO). To simplifying the description, a three-dimensional (3D) “heat transfer-thermal stress” coupling topology design problem is used as an instance to interpret the solving scheme. Unlike the common multiphysics topology optimization problem which usually modeled in a 3D domain or a 2D domain alternatively, the topology optimization problem mentioned in this paper has a 3D design domain (the design variable is referred as ρ1) and two 2D design domains (the design variable is referred as ρ2and ρ3) together in one mathematical model. Although all the model and solving method are based on a certain design instance, the solving scheme presented in this paper can be used as an efficient method for solving the boundary coupling MTO.


2021 ◽  
Vol 37 ◽  
pp. 270-281
Author(s):  
Fangfang Yin ◽  
Kaifang Dang ◽  
Weimin Yang ◽  
Yumei Ding ◽  
Pengcheng Xie

Abstract In order to solve the application restrictions of deterministic-based topology optimization methods arising from the omission of uncertainty factors in practice, and to realize the calculation cost control of reliability-based topology optimization. In consideration of the current reliability-based topology optimization methods of continuum structures mainly based on performance indexes model with a power filter function. An efficient probabilistic reliability-based topology optimization model that regards mass and displacement as an objective function and constraint is established based on the first-order reliability method and a modified economic indexes model with a composite exponential filter function in this study. The topology optimization results obtained by different models are discussed in relation to optimal structure and convergence efficiency. Through numerical examples, it can be seen that the optimal layouts obtained by reliability-based models have an increased amount of material and more support structures, which reveals the necessity of considering uncertainty in lightweight design. In addition, the reliability-based modified model not only can obtain lighter optimal structures compared with traditional economic indexes models in most circumstances, but also has a significant advantage in convergence efficiency, with an average increase of 44.59% and 64.76% compared with the other two reliability-based models. Furthermore, the impact of the reliability index on the results is explored, which verifies the validity of the established model. This study provides a theoretical reference for lightweight or innovative feature-integrated design in engineering applications.


2020 ◽  
Vol 33 (1) ◽  
Author(s):  
Jie Gao ◽  
Mi Xiao ◽  
Yan Zhang ◽  
Liang Gao

AbstractTopology Optimization (TO) is a powerful numerical technique to determine the optimal material layout in a design domain, which has accepted considerable developments in recent years. The classic Finite Element Method (FEM) is applied to compute the unknown structural responses in TO. However, several numerical deficiencies of the FEM significantly influence the effectiveness and efficiency of TO. In order to eliminate the negative influence of the FEM on TO, IsoGeometric Analysis (IGA) has become a promising alternative due to its unique feature that the Computer-Aided Design (CAD) model and Computer-Aided Engineering (CAE) model can be unified into a same mathematical model. In the paper, the main intention is to provide a comprehensive overview for the developments of Isogeometric Topology Optimization (ITO) in methods and applications. Finally, some prospects for the developments of ITO in the future are also presented.


2021 ◽  
Vol 11 (8) ◽  
pp. 3538
Author(s):  
Mauricio Arredondo-Soto ◽  
Enrique Cuan-Urquizo ◽  
Alfonso Gómez-Espinosa

Cellular Materials and Topology Optimization use a structured distribution of material to achieve specific mechanical properties. The controlled distribution of material often leads to several advantages including the customization of the resulting mechanical properties; this can be achieved following these two approaches. In this work, a review of these two as approaches used with compliance purposes applied at flexure level is presented. The related literature is assessed with the aim of clarifying how they can be used in tailoring stiffness of flexure elements. Basic concepts needed to understand the fundamental process of each approach are presented. Further, tailoring stiffness is described as an evolutionary process used in compliance applications. Additionally, works that used these approaches to tailor stiffness of flexure elements are described and categorized. Finally, concluding remarks and recommendations to further extend the study of these two approaches in tailoring the stiffness of flexure elements are discussed.


2021 ◽  
Vol 1 ◽  
pp. 2247-2256
Author(s):  
Martin Denk ◽  
Klemens Rother ◽  
Mario Zinßer ◽  
Christoph Petroll ◽  
Kristin Paetzold

AbstractTopology optimization is typically used for suitable design suggestions for objectives like mean compliance, mean temperature, or model analysis. Some modern modeling technics in topology optimization require a nodal based material interpolation. Therefore this article is referred to a continuous material interpolation in topology optimization. To cover a smooth and differentiable density field, we address trigonometric shape functions which are infinitely differentiable. Furthermore, we extend a so-known global criteria method with a sharpening function based on binary cross-entropy, so that sharper solutions results. The proposed material interpolation is applied to different applications such as heat transfer, elasto static, and potential flow. Furthermore, these different objectives are together optimized using a multi-objective criterion.


Sign in / Sign up

Export Citation Format

Share Document