An Efficient Visibility Graph Similarity Algorithm and Its Application on Sleep Stages Classification

Author(s):  
Guohun Zhu ◽  
Yan Li ◽  
Peng Paul Wen
2020 ◽  
Vol 6 (4) ◽  
pp. 355-363
Author(s):  
Qing Cai ◽  
Jianpeng An ◽  
Zhongke Gao

Sleep is an essential integrant in everyone’s daily life; therefore, it is an important but challenging problem to characterize sleep stages from electroencephalogram (EEG) signals. The network motif has been developed as a useful tool to investigate complex networks. In this study, we developed a multiplex visibility graph motif‐based convolutional neural network (CNN) for characterizing sleep stages using EEG signals and then introduced the multiplex motif entropy as the quantitative index to distinguish the six sleep stages. The independent samples t‐test shows that the multiplex motif entropy values have significant differences among the six sleep stages. Furthermore, we developed a CNN model and employed the multiplex motif sequence as the input of the model to classify the six sleep stages. Notably, the classification accuracy of the six‐state stage detection was 85.27%. Results demonstrated the effectiveness of the multiplex motif in characterizing the dynamic features underlying different sleep stages, whereby they further provide an essential strategy for future sleep‐stage detection research.


2010 ◽  
Vol 24 (2) ◽  
pp. 91-101 ◽  
Author(s):  
Juliana Yordanova ◽  
Rolf Verleger ◽  
Ullrich Wagner ◽  
Vasil Kolev

The objective of the present study was to evaluate patterns of implicit processing in a task where the acquisition of explicit and implicit knowledge occurs simultaneously. The number reduction task (NRT) was used as having two levels of organization, overt and covert, where the covert level of processing is associated with implicit associative and implicit procedural learning. One aim was to compare these two types of implicit processes in the NRT when sleep was or was not introduced between initial formation of task representations and subsequent NRT processing. To assess the effects of different sleep stages, two sleep groups (early- and late-night groups) were used where initial training of the task was separated from subsequent retest by 3 h full of predominantly slow wave sleep (SWS) or rapid eye movement (REM) sleep. In two no-sleep groups, no interval was introduced between initial and subsequent NRT performance. A second aim was to evaluate the interaction between procedural and associative implicit learning in the NRT. Implicit associative learning was measured by the difference between the speed of responses that could or could not be predicted by the covert abstract regularity of the task. Implicit procedural on-line learning was measured by the practice-based increased speed of performance with time on task. Major results indicated that late-night sleep produced a substantial facilitation of implicit associations without modifying individual ability for explicit knowledge generation or for procedural on-line learning. This was evidenced by the higher rate of subjects who gained implicit knowledge of abstract task structure in the late-night group relative to the early-night and no-sleep groups. Independently of sleep, gain of implicit associative knowledge was accompanied by a relative slowing of responses to unpredictable items suggesting reciprocal interactions between associative and motor procedural processes within the implicit system. These observations provide evidence for the separability and interactions of different patterns of processing within implicit memory.


Sign in / Sign up

Export Citation Format

Share Document