graph similarity
Recently Published Documents


TOTAL DOCUMENTS

162
(FIVE YEARS 56)

H-INDEX

21
(FIVE YEARS 4)

2021 ◽  
Vol 189 ◽  
pp. 108301
Author(s):  
Xu Ma ◽  
Shengen Zhang ◽  
Karelia Pena-Pena ◽  
Gonzalo R. Arce

Electronics ◽  
2021 ◽  
Vol 10 (22) ◽  
pp. 2739
Author(s):  
Fernando Andres Lovera ◽  
Yudith Coromoto Cardinale ◽  
Masun Nabhan Homsi

The traditional way to address the problem of sentiment classification is based on machine learning techniques; however, these models are not able to grasp all the richness of the text that comes from different social media, personal web pages, blogs, etc., ignoring the semantic of the text. Knowledge graphs give a way to extract structured knowledge from images and texts in order to facilitate their semantic analysis. This work proposes a new hybrid approach for Sentiment Analysis based on Knowledge Graphs and Deep Learning techniques to identify the sentiment polarity (positive or negative) in short documents, such as posts on Twitter. In this proposal, tweets are represented as graphs; then, graph similarity metrics and a Deep Learning classification algorithm are applied to produce sentiment predictions. This approach facilitates the traceability and interpretability of the classification results, thanks to the integration of the Local Interpretable Model-agnostic Explanations (LIME) model at the end of the pipeline. LIME allows raising trust in predictive models, since the model is not a black box anymore. Uncovering the black box allows understanding and interpreting how the network could distinguish between sentiment polarities. Each phase of the proposed approach conformed by pre-processing, graph construction, dimensionality reduction, graph similarity, sentiment prediction, and interpretability steps is described. The proposal is compared with character n-gram embeddings-based Deep Learning models to perform Sentiment Analysis. Results show that the proposal is able to outperforms classical n-gram models, with a recall up to 89% and F1-score of 88%.


Author(s):  
Kevin Sendjaja ◽  
Satrio Adi Rukmono ◽  
Riza Satria Perdana

Solid Earth ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 2159-2209
Author(s):  
Rahul Prabhakaran ◽  
Giovanni Bertotti ◽  
Janos Urai ◽  
David Smeulders

Abstract. Rock fractures organize as networks, exhibiting natural variation in their spatial arrangements. Therefore, identifying, quantifying, and comparing variations in spatial arrangements within network geometries are of interest when explicit fracture representations or discrete fracture network models are chosen to capture the influence of fractures on bulk rock behaviour. Treating fracture networks as spatial graphs, we introduce a novel approach to quantify spatial variation. The method combines graph similarity measures with hierarchical clustering and is applied to investigate the spatial variation within large-scale 2-D fracture networks digitized from the well-known Lilstock limestone pavements, Bristol Channel, UK. We consider three large, fractured regions, comprising nearly 300 000 fractures spread over 14 200 m2 from the Lilstock pavements. Using a moving-window sampling approach, we first subsample the large networks into subgraphs. Four graph similarity measures – fingerprint distance, D-measure, Network Laplacian spectral descriptor (NetLSD), and portrait divergence – that encapsulate topological relationships and geometry of fracture networks are then used to compute pair-wise subgraph distances serving as input for the statistical hierarchical clustering technique. In the form of hierarchical dendrograms and derived spatial variation maps, the results indicate spatial autocorrelation with localized spatial clusters that gradually vary over distances of tens of metres with visually discernable and quantifiable boundaries. Fractures within the identified clusters exhibit differences in fracture orientations and topology. The comparison of graph similarity-derived clusters with fracture persistence measures indicates an intra-network spatial variation that is not immediately obvious from the ubiquitous fracture intensity and density maps. The proposed method provides a quantitative way to identify spatial variations in fracture networks, guiding stochastic and geostatistical approaches to fracture network modelling.


2021 ◽  
Author(s):  
Chuang Liu ◽  
Hua Yang ◽  
Ji Zhu ◽  
Xinzhe Li ◽  
Zhigang Chang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document