scholarly journals On the NP-Hardness of Approximating Ordering Constraint Satisfaction Problems

Author(s):  
Per Austrin ◽  
Rajsekar Manokaran ◽  
Cenny Wenner
2013 ◽  
Vol 22 (02) ◽  
pp. 1350006
Author(s):  
MAHER HELAOUI ◽  
WADY NAANAA ◽  
BECHIR AYEB

Many combinatorial problems can be formulated as Valued Constraint Satisfaction Problems (VCSPs). In this framework, the constraints are defined by means of valuation functions to reflect several degrees of coherence. Despite the NP-hardness of the VCSP, tractable versions can be obtained by forcing the allowable valuation functions to have specific features. This is the case for submodular VCSPs, i.e. VCSPs that involve submodular valuation functions only. In this paper, we propose a problem decomposition scheme for binary VCSPs that takes advantage of submodular functions even when the studied problem is not submodular. The proposed scheme consists in decomposing the problem to be solved into a set of submodular, then tractable, subproblems. The decomposition scheme combines two techniques that where already used in the framework of constraint-based reasoning, but in separate manner. These techniques are domain partitioning and value permutation.


2021 ◽  
Vol 13 (4) ◽  
pp. 1-20
Author(s):  
Alex Brandts ◽  
Marcin Wrochna ◽  
Stanislav Živný

While 3-SAT is NP-hard, 2-SAT is solvable in polynomial time. Austrin et al. [SICOMP’17] proved a result known as “(2+ɛ)-SAT is NP-hard.” They showed that the problem of distinguishing k -CNF formulas that are g -satisfiable (i.e., some assignment satisfies at least g literals in every clause) from those that are not even 1-satisfiable is NP-hard if g/k < 1/2 and is in P otherwise. We study a generalisation of SAT on arbitrary finite domains, with clauses that are disjunctions of unary constraints, and establish analogous behaviour. Thus, we give a dichotomy for a natural fragment of promise constraint satisfaction problems ( PCSPs ) on arbitrary finite domains. The hardness side is proved using the algebraic approach via a new general NP-hardness criterion on polymorphisms, which is based on a gap version of the Layered Label Cover problem. We show that previously used criteria are insufficient—the problem hence gives an interesting benchmark of algebraic techniques for proving hardness of approximation in problems such as PCSPs.


2013 ◽  
Vol 44 (2) ◽  
pp. 131-156 ◽  
Author(s):  
Laura Climent ◽  
Richard J. Wallace ◽  
Miguel A. Salido ◽  
Federico Barber

Author(s):  
Marlene Arangú ◽  
Miguel Salido

A fine-grained arc-consistency algorithm for non-normalized constraint satisfaction problems Constraint programming is a powerful software technology for solving numerous real-life problems. Many of these problems can be modeled as Constraint Satisfaction Problems (CSPs) and solved using constraint programming techniques. However, solving a CSP is NP-complete so filtering techniques to reduce the search space are still necessary. Arc-consistency algorithms are widely used to prune the search space. The concept of arc-consistency is bidirectional, i.e., it must be ensured in both directions of the constraint (direct and inverse constraints). Two of the most well-known and frequently used arc-consistency algorithms for filtering CSPs are AC3 and AC4. These algorithms repeatedly carry out revisions and require support checks for identifying and deleting all unsupported values from the domains. Nevertheless, many revisions are ineffective, i.e., they cannot delete any value and consume a lot of checks and time. In this paper, we present AC4-OP, an optimized version of AC4 that manages the binary and non-normalized constraints in only one direction, storing the inverse founded supports for their later evaluation. Thus, it reduces the propagation phase avoiding unnecessary or ineffective checking. The use of AC4-OP reduces the number of constraint checks by 50% while pruning the same search space as AC4. The evaluation section shows the improvement of AC4-OP over AC4, AC6 and AC7 in random and non-normalized instances.


2001 ◽  
Vol 1 (6) ◽  
pp. 713-750 ◽  
Author(s):  
KRZYSZTOF R. APT ◽  
ERIC MONFROY

We study here a natural situation when constraint programming can be entirely reduced to rule-based programming. To this end we explain first how one can compute on constraint satisfaction problems using rules represented by simple first-order formulas. Then we consider constraint satisfaction problems that are based on predefined, explicitly given constraints. To solve them we first derive rules from these explicitly given constraints and limit the computation process to a repeated application of these rules, combined with labeling. We consider two types of rule here. The first type, that we call equality rules, leads to a new notion of local consistency, called rule consistency that turns out to be weaker than arc consistency for constraints of arbitrary arity (called hyper-arc consistency in Marriott & Stuckey (1998)). For Boolean constraints rule consistency coincides with the closure under the well-known propagation rules for Boolean constraints. The second type of rules, that we call membership rules, yields a rule-based characterization of arc consistency. To show feasibility of this rule-based approach to constraint programming, we show how both types of rules can be automatically generated, as CHR rules of Frühwirth (1995). This yields an implementation of this approach to programming by means of constraint logic programming. We illustrate the usefulness of this approach to constraint programming by discussing various examples, including Boolean constraints, two typical examples of many valued logics, constraints dealing with Waltz's language for describing polyhedral scenes, and Allen's qualitative approach to temporal logic.


Sign in / Sign up

Export Citation Format

Share Document