As face presentation attacks (PAs) are realistic threats for unattended face verification systems, face presentation attack detection (PAD) has been intensively investigated in past years, and the recent advances in face PAD have significantly reduced the success rate of such attacks. In this article, an empirical study on a novel and effective face impostor PA is made. In the proposed PA, a facial artifact is created by using the most vulnerable facial components, which are optimally selected based on the vulnerability analysis of different facial components to impostor PAs. An attacker can launch a face PA by presenting a facial artifact on his or her own real face. With a collected PA database containing various types of artifacts and presentation attack instruments (PAIs), the experimental results and analysis show that the proposed PA poses a more serious threat to face verification and PAD systems compared with the print, replay, and mask PAs. Moreover, the generalization ability of the proposed PA and the vulnerability analysis with regard to commercial systems are also investigated by evaluating unknown face verification and real-world PAD systems. It provides a new paradigm for the study of face PAs.