phase transitions
Recently Published Documents


TOTAL DOCUMENTS

28356
(FIVE YEARS 2902)

H-INDEX

240
(FIVE YEARS 24)

2022 ◽  
Vol 147 ◽  
pp. 107701
Author(s):  
Alexey V. Kiselev ◽  
Vitaly V. Ionin ◽  
Anton A. Burtsev ◽  
Nikolai N. Eliseev ◽  
Vladimir A. Mikhalevsky ◽  
...  

2022 ◽  
Vol 236 ◽  
pp. 111801
Author(s):  
Daoguan Ning ◽  
Yuriy Shoshin ◽  
Martijn van Stiphout ◽  
Joreon van Oijen ◽  
Giulia Finotello ◽  
...  

2022 ◽  
Author(s):  
Kaiyuan Cao ◽  
Ming Zhong ◽  
Peiqing Tong

Abstract We study the dynamical quantum phase transitions (DQPTs) in the XY chains with the Dzyaloshinskii-Moriya interaction and the XZY-YZX type of three-site interaction after a sudden quench. Both the models can be mapped to the spinless free fermion models by the Jordan-Wigner and Bogoliubov transformations with the form $H=\sum_{k}\varepsilon_{k}(\eta^†_{k}\eta_{k}-\frac{1}{2})$, where the quasiparticle excitation spectra $\varepsilon_{k}$ may be smaller than 0 for some $k$ and are asymmetrical ($\varepsilon_{k}\neq\varepsilon_{-k}$). It's found that the factors of Loschmidt echo equal 1 for some $k$ corresponding to the quasiparticle excitation spectra of the pre-quench Hamiltonian satisfying $\varepsilon_{k}\cdot\varepsilon_{-k}<0$, when the quench is from the gapless phase. By considering the quench from different ground states, we obtain the conditions for the occurrence of DQPTs for the general XY chains with gapless phase, and find that the DQPTs may not occur in the quench across the quantum phase transitions regardless of whether the quench is from the gapless phase to gapped phase or from the gapped phase to gapless phase. This is different from the DQPTs in the case of quench from the gapped phase to gapped phase, in which the DQPTs will always appear. Besides, we also analyze the different reasons for the absence of DQPTs in the quench from the gapless phase and the gapped phase. The conclusion can also be extended to the general quantum spin chains.


Author(s):  
Jiaxun Liu ◽  
Juan Du ◽  
Anthony E Phillips ◽  
Peter B Wyatt ◽  
David A Keen ◽  
...  

Abstract We report the results of a neutron powder diffraction study of the phase transitions in deuterated methylammonium lead iodide, with a focus on the system of orientational distortions of the framework of PbI6 octahedra. The results are analysed in terms of symmetry-adapted lattice strains and normal mode distortions. The higher-temperature cubic–tetragonal phase transition at 327 K is weakly discontinuous and nearly tricritical. The variations of rotation angles and spontaneous strains with temperature are consistent with a standard Landau theory treatment. The lower-temperature transition to the orthorhombic phase at 165 K is discontinuous, with two systems of octahedral rotations and internal distortions that together can be described by five order parameters of different symmetry. In this paper we quantify the various symmetry breaking distortions and their variation with temperature, together with their relationship to the spontaneous strains, within the formalism of Landau theory. A number of curious results in the low-temperature phase are identified, particularly regarding distortion amplitudes that decrease rather than increase with lowering temperature.


2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Daniel Perez-Salinas ◽  
Allan S. Johnson ◽  
Dharmalingam Prabhakaran ◽  
Simon Wall

AbstractSpontaneous C4-symmetry breaking phases are ubiquitous in layered quantum materials, and often compete with other phases such as superconductivity. Preferential suppression of the symmetry broken phases by light has been used to explain non-equilibrium light induced superconductivity, metallicity, and the creation of metastable states. Key to understanding how these phases emerge is understanding how C4 symmetry is restored. A leading approach is based on time-dependent Ginzburg-Landau theory, which explains the coherence response seen in many systems. However, we show that, for the case of the single layered manganite La0.5Sr1.5MnO4, the theory fails. Instead, we find an ultrafast inhomogeneous disordering transition in which the mean-field order parameter no longer reflects the atomic-scale state of the system. Our results suggest that disorder may be common to light-induced phase transitions, and methods beyond the mean-field are necessary for understanding and manipulating photoinduced phases.


2022 ◽  
Vol 105 (2) ◽  
Author(s):  
Jing Liu ◽  
Ligong Bian ◽  
Rong-Gen Cai ◽  
Zong-Kuan Guo ◽  
Shao-Jiang Wang

Sign in / Sign up

Export Citation Format

Share Document