Morley rank

Author(s):  
Annalisa Marcja ◽  
Carlo Toffalori
Keyword(s):  
2005 ◽  
Vol 8 (5) ◽  
Author(s):  
Olivier Frécon ◽  
Eric Jaligot

1999 ◽  
Vol 211 (2) ◽  
pp. 409-456 ◽  
Author(s):  
Tuna Altınel ◽  
Alexandre Borovik ◽  
Gregory Cherlin

1999 ◽  
Vol 64 (3) ◽  
pp. 1280-1284 ◽  
Author(s):  
Ehud Hrushovski ◽  
Thomas Scanlon

We note here, in answer to a question of Poizat, that the Morley and Lascar ranks need not coincide in differentially closed fields. We will approach this through the (perhaps) more fundamental issue of the variation of Morley rank in families. We will be interested here only in sets of finite Morley rank. Section 1 consists of some general lemmas relating the above issues. Section 2 points out a family of sets of finite Morley rank, whose Morley rank exhibits discontinuous upward jumps. To make the base of the family itself have finite Morley rank, we use a theorem of Buium.


1991 ◽  
Vol 56 (4) ◽  
pp. 1184-1194 ◽  
Author(s):  
Steven Buechler

AbstractLet D be a strongly minimal set in the language L, and D′ ⊃ D an elementary extension with infinite dimension over D. Add to L a unary predicate symbol D and let T′ be the theory of the structure (D′, D), where D interprets the predicate D. It is known that T′ is ω-stable. We proveTheorem A. If D is not locally modular, then T′ has Morley rank ω.We say that a strongly minimal set D is pseudoprojective if it is nontrivial and there is a k < ω such that, for all a, b ∈ D and closed X ⊂ D, a ∈ cl(Xb) ⇒ there is a Y ⊂ X with a ∈ cl(Yb) and ∣Y∣ ≤ k. Using Theorem A, we proveTheorem B. If a strongly minimal set D is pseudoprojective, then D is locally projective.The following result of Hrushovski's (proved in §4) plays a part in the proof of Theorem B.Theorem C. Suppose that D is strongly minimal, and there is some proper elementary extension D1 of D such that the theory of the pair (D1, D) is ω1-categorical. Then D is locally modular.


2009 ◽  
Vol 321 (5) ◽  
pp. 1383-1406 ◽  
Author(s):  
Jeffrey Burdges

2004 ◽  
Vol 276 (1) ◽  
pp. 13-79 ◽  
Author(s):  
Gregory Cherlin ◽  
Eric Jaligot

1994 ◽  
Vol 50 (3) ◽  
pp. 532-546 ◽  
Author(s):  
Mark DeBonis ◽  
Ali Nesin

2008 ◽  
Vol 11 (5) ◽  
Author(s):  
Tom De Medts ◽  
Katrin Tent

Sign in / Sign up

Export Citation Format

Share Document