minimal sets
Recently Published Documents


TOTAL DOCUMENTS

351
(FIVE YEARS 32)

H-INDEX

24
(FIVE YEARS 2)

2021 ◽  
Vol 28 (3) ◽  
Author(s):  
Radhika Gupta ◽  
Ivan Levcovitz ◽  
Alexander Margolis ◽  
Emily Stark

A subset of vertices of a graph is minimal if, within all subsets of the same size, its vertex boundary is minimal. We give a complete, geometric characterization of minimal sets for the planar integer lattice $X$. Our characterization elucidates the structure of all minimal sets, and we are able to use it to obtain several applications. We show that the neighborhood of a minimal set is minimal. We characterize uniquely minimal sets of $X$: those which are congruent to any other minimal set of the same size. We also classify all efficient sets of $X$: those that have maximal size amongst all such sets with a fixed vertex boundary. We define and investigate the graph $G$ of minimal sets whose vertices are congruence classes of minimal sets of $X$ and whose edges connect vertices which can be represented by minimal sets that differ by exactly one vertex. We prove that G has exactly one infinite component, has infinitely many isolated vertices and has bounded components of arbitrarily large size. Finally, we show that all minimal sets, except one, are connected.


Author(s):  
Jan P. Boroński ◽  
Alex Clark ◽  
Piotr Oprocha

AbstractWe develop a technique, pseudo-suspension, that applies to invariant sets of homeomorphisms of a class of annulus homeomorphisms we describe, Handel–Anosov–Katok (HAK) homeomorphisms, that generalize the homeomorphism first described by Handel. Given a HAK homeomorphism and a homeomorphism of the Cantor set, the pseudo-suspension yields a homeomorphism of a new space that combines features of both of the original homeomorphisms. This allows us to answer a well known open question by providing examples of hereditarily indecomposable continua that admit homeomorphisms with positive finite entropy. Additionally, we show that such examples occur as minimal sets of volume preserving smooth diffeomorphisms of 4-dimensional manifolds.We construct an example of a minimal, weakly mixing and uniformly rigid homeomorphism of the pseudo-circle, and by our method we are also able to extend it to other one-dimensional hereditarily indecomposable continua, thereby producing the first examples of minimal, uniformly rigid and weakly mixing homeomorphisms in dimension 1. We also show that the examples we construct can be realized as invariant sets of smooth diffeomorphisms of a 4-manifold. Until now the only known examples of connected spaces that admit minimal, uniformly rigid and weakly mixing homeomorphisms were modifications of those given by Glasner and Maon in dimension at least 2.


2021 ◽  
Vol 31 (07) ◽  
pp. 2150100
Author(s):  
Zdeněk Kočan ◽  
Veronika Kurková ◽  
Michal Málek

Dynamical systems generated by continuous maps on compact metric spaces can have various properties, e.g. the existence of an arc horseshoe, the positivity of topological entropy, the existence of a homoclinic trajectory, the existence of an omega-limit set containing two minimal sets and other. In [Kočan et al., 2014] we consider six such properties and survey the relations among them for the cases of graph maps, dendrite maps and maps on compact metric spaces. In this paper, we consider fourteen such properties, provide new results and survey all the relations among the properties for the case of graph maps and all known relations for the case of dendrite maps. We formulate some open problems at the end of the paper.


Author(s):  
Ali Muhammad Ali Rushdi ◽  
Raid Salih Badawi

This paper utilizes a modern regular and modular eight-variable Karnaugh map in a systematic investigation of cause-effect relationships modeled by partially-defined Boolean functions (PDBF) (known also as incompletely specified switching functions). First, we present a Karnaugh-map test that can decide whether a certain variable must be included in a set of supporting variables of the function, and, otherwise, might enforce the exclusion of this variable from such a set. This exclusion is attained via certain don’t-care assignments that ensure the equivalence of the Boolean quotient w.r.t. the variable, and that w.r.t. its complement, i.e., the exact matching of the half map representing the internal region of the variable, and the remaining half map representing the external region of the variable, in which case any of these two half maps replaces the original full map as a representation of the function. Such a variable exclusion might be continued w.r.t. other variables till a minimal set of supporting variables is reached. The paper addresses a dominantly-unspecified PDBF to obtain all its minimal sets of supporting variables without resort to integer programming techniques. For each of the minimal sets obtained, standard map methods for extracting prime implicants allow the construction of all irredundant disjunctive forms (IDFs). According to this scheme of first identifying a minimal set of supporting variables, we avoid the task of drawing prime-implicant loops on the initial eight-variable map, and postpone this task till the map is dramatically reduced in size. The procedure outlined herein has important ramifications for the newly-established discipline of Qualitative Comparative Analysis (QCA). These ramifications are not expected to be welcomed by the QCA community, since they clearly indicate that the too-often strong results claimed by QCA adherents need to be checked and scrutinized.


Author(s):  
Ali Muhammad Ali Rushdi ◽  
Raid Salih Badawi

We use a regular and modular eight-variable Karnaugh map to reveal some technical details of Boolean minimization usually employed in solving problems of Qualitative Comparative Analysis (QCA). We utilize as a large running example a prominent eight-variable political-science problem of sparse diversity (involving a partially-defined Boolean function (PDBF), that is dominantly unspecified). We recover the published solution of this problem, showing that it is merely one candidate solution among a set of many equally-likely competitive solutions. We immediately obtain one of these rival solutions, that looks better than the published solution in two aspects, namely: (a) it is based on a smaller minimal set of supporting variables, and (b) it provides a more compact Boolean formula. However, we refrain from labelling our solution as a better one, but instead we stress that it is simply un-comparable with the published solution. The comparison between any two rival solutions should be context-specific and not tool-specific. In fact, the Boolean minimization technique, borrowed from the area of digital design, cannot be used as is in QCA context. A more suitable paradigm for QCA problems is to identify all minimal sets of supporting variables (possibly via integer programming), and then obtain all irredundant disjunctive forms (IDFs) for each of these sets. Such a paradigm stresses inherent ambiguity, and does not seem appealing as the QCA one, which usually provides a decisive answer (irrespective of whether it is justified or not).The problem studied herein is shown to have at least four distinct minimal sets of supporting variables with various cardinalities. Each of the corresponding functions does not have any non-essential prime implicants, and hence each enjoys the desirable feature of having a single IDF that is both a unique minimal sum and the complete sum. Moreover, each of them is unate as it is expressible in terms of un-complemented literals only. Political scientists are invited to investigate the meanings of the (so far) abstract formulas we obtained, and to devise some context-specific tool to assess and compare them.


2021 ◽  
Author(s):  
Đặng Võ Phúc

We denote by $\mathbb Z_2$ the prime field of two elements and by $P_t = \mathbb Z_2[x_1, \ldots, x_t]$ the polynomial algebra of $t$ generators $x_1, \ldots, x_t$ with $\deg(x_j) = 1.$ Let $\mathcal A_2$ be the Steenrod algebra over $\mathbb Z_2.$ A central problem of homotopy theory is to determine a minimal set of generators for the $\mathbb Z_2$-graded vector space $\{(\mathbb Z_2\otimes_{\mathcal A_2} P_t)_n\}_{n\geq 0}.$ It is called \textit{the "hit" problem} for Steenrod algebra and has been completely solved for $t\leq 4.$ In this article, we explicitly solve the hit problem of five variables in the generic degree $5(2^{s}-1) + 42.2^{s}$ for any $s\geq 0.$ The result confirms Sum's conjecture \cite{N.S2} for the relation between the minimal sets of $\mathcal A_2$-generators of the algebras $P_{t-1}$ and $P_{t}$ in the case $t=5$ and the above generic degree. An efficient approach to surveying the hit problem of five variables has been presented. As an application, we obtain the dimension of $(\mathbb Z_2\otimes_{\mathcal A_2} P_t)_n$ for $t = 6$ and the generic degree $n = 5(2^{s+5}-1) + 42.2^{s+5}$ for all $s\geq 0.$ At the same time, we show that the fifth Singer algebraic transfer is an isomorphism in bidegree $(5, 47.2^{s})$ with $s\geq 0.$


Author(s):  
Sofia Ercolanoni ◽  
Alberto Facchini

AbstractWe describe the structure of the projective cover of a module $$M_R$$ M R over a local ring R and its relation with minimal sets of generators of $$M_R$$ M R . The behaviour of local right perfect rings is completely different from the behaviour of local rings that are not right perfect.


Author(s):  
Aleksandr P. Afanas’ev ◽  
Sergei M. Dzyuba

The article presents a new property of recurrent motions of dynamical systems. Within a compact metric space, this property establishes the relation between motions of general type and recurrent motions. Besides, this property establishes rather simple behaviour of recurrent motions, thus naturally corroborating the classical definition given in the monograph [V.V. Nemytskii, V.V. Stepanov. Qualitative Theory of Differential Equations. URSS Publ., Moscow, 2004 (In Russian)]. Actually, the above-stated new property of recurrent motions was announced, for the first time, in the earlier article by the same authors [A.P. Afanas’ev, S. M. Dzyuba. On recurrent trajectories, minimal sets, and quasiperoidic motions of dynamical systems // Differential Equations. 2005, v. 41, № 11, p. 1544–1549]. The very same article provides a short proof for the corresponding theorem. The proof in question turned out to be too schematic. Moreover, it (the proof) includes a range of obvious gaps. Some time ago it was found that, on the basis of this new property, it is possible to show that within a compact metric space α- and ω-limit sets of each and every motion are minimal. Therefore, within a compact metric space each and every motion, which is positively (negatively) stable in the sense of Poisson, is recurrent. Those results are of obvious significance. They clearly show the reason why, at present, there are no criteria for existence of non-recurrent motions stable in the sense of Poisson. Moreover, those results show the reason why the existing attempts of creating non-recurrent motions, stable in the sense of Poisson, on compact closed manifolds turned out to be futile. At least, there are no examples of such motions. The key point of the new property of minimal sets is the stated new property of recurrent motions. That is why here, in our present article, we provide a full and detailed proof for that latter property. For the first time, the results of the present study were reported on the 28th of January, 2020 at a seminar of Dobrushin Mathematic Laboratory at the Institute for Information Transmission Problems named after A. A. Kharkevich of the Russian Academy of Sciences.


Sign in / Sign up

Export Citation Format

Share Document