General Abelian Varieties and Theta Function

1997 ◽  
pp. 310-317
Author(s):  
Krzysztof Maurin
1962 ◽  
Vol 20 ◽  
pp. 1-27 ◽  
Author(s):  
Hisasi Morikawa

We shall denote by the Z-module of integral vectors of dimension r, by T a symmetric complex matrix with positive definite imaginary part and by g the variable vector. If we put and the fundamental theta function is expressed in the form: as a series in q and u. Other theta functions in the classical theory are derived from the fundamental theta function by translating the origin and making sums and products, so these theta functions are also expressed in the form: as series of q and u. Moreover the coefficients in the relations of theta functions are also expressed in the form: as series in q.


Author(s):  
H. P. F. Swinnerton-Dyer

2020 ◽  
Vol 9 (7) ◽  
pp. 4929-4936
Author(s):  
D. Anu Radha ◽  
B. R. Srivatsa Kumar ◽  
S. Udupa

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Joshua Males ◽  
Andreas Mono ◽  
Larry Rolen

Abstract In the theory of harmonic Maaß forms and mock modular forms, mock theta functions are distinguished examples which arose from q-hypergeometric examples of Ramanujan. Recently, there has been a body of work on higher depth mock modular forms. Here, we introduce distinguished examples of these forms, which we call higher depth mock theta functions, and develop q-hypergeometric expressions for them. We provide three examples of mock theta functions of depth two, each arising by multiplying a classical mock theta function with a certain specialization of a universal mock theta function. In addition, we give their modular completions, and relate each to a q-hypergeometric series.


1993 ◽  
Vol 45 (2) ◽  
pp. 159-189
Author(s):  
Masa-Hiko Saitō
Keyword(s):  

2005 ◽  
Vol 85 (5) ◽  
pp. 409-418 ◽  
Author(s):  
Luis Fuentes García

2001 ◽  
Vol 236 (1) ◽  
pp. 191-200 ◽  
Author(s):  
Shigeharu Takayama

Sign in / Sign up

Export Citation Format

Share Document