Secret Image Sharing Over Cloud Using One-Dimensional Chaotic Map

Author(s):  
Priyamwada Sharma ◽  
Vedant Sharma
2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Wei-Tong Hu ◽  
Ming-Chu Li ◽  
Cheng Guo ◽  
Li-Feng Yuan

Secret image sharing schemes have been extensively studied by far. However, there are just a few schemes that can restore both the secret image and the cover image losslessly. These schemes have one or more defects in the following aspects: (1) high computation cost; (2) overflow issue existing when modulus operation is used to restore the cover image and the secret image; (3) part of the cover image being severely modified and the stego images having worse visual quality. In this paper, we combine the methods of least significant bits construction (LSBC) and dynamic embedding with one-dimensional cellular automata to propose a new lossless scheme which solves the above issues and can resist differential attack and support parallel computing. Experimental results also show that this scheme has the merit of big embedding capacity.


Author(s):  
CHUNQIANG HU ◽  
XIAOFENG LIAO ◽  
DI XIAO

Secret sharing is an efficient method for transmitting the image securely. This paper proposes an efficient secret sharing scheme for secret image. The protocol allows each participant to share a secret gray image with the rest of participants. In our scheme, a secret digital image is divided into n pieces, which are further distributed into n participants. The secret digital image can be reconstructed if and only if r or more legal participants cooperate together. These schemes have no pixel expansion. It is general in nature and can be applied on any image size. The proposed scheme is based on the chaotic map and the Chinese Remainder theorem. The security of the scheme is analyzed and the protocol is proven to be secure and be able to resist statistic and exhaustive attacks.


2013 ◽  
Vol 32 (3) ◽  
pp. 669-678
Author(s):  
Xiao-jing WANG ◽  
Jia-jia FANG ◽  
Hong-liang CAI ◽  
Yi-ding WANG

Author(s):  
Xuehu Yan ◽  
Lintao Liu ◽  
Longlong Li ◽  
Yuliang Lu

A secret image is split into   shares in the generation phase of secret image sharing (SIS) for a  threshold. In the recovery phase, the secret image is recovered when any   or more shares are collected, and each collected share is generally assumed to be lossless in conventional SIS during storage and transmission. However, noise will arise during real-world storage and transmission; thus, shares will experience data loss, which will also lead to data loss in the secret image being recovered. Secret image recovery in the case of lossy shares is an important issue that must be addressed in practice, which is the overall subject of this article. An SIS scheme that can recover the secret image from lossy shares is proposed in this article. First, robust SIS and its definition are introduced. Next, a robust SIS scheme for a  threshold without pixel expansion is proposed based on the Chinese remainder theorem (CRT) and error-correcting codes (ECC). By screening the random numbers, the share generation phase of the proposed robust SIS is designed to implement the error correction capability without increasing the share size. Particularly in the case of collecting noisy shares, our recovery method is to some degree robust to some noise types, such as least significant bit (LSB) noise, JPEG compression, and salt-and-pepper noise. A theoretical proof is presented, and experimental results are examined to evaluate the effectiveness of our proposed method.


2017 ◽  
Vol 22 (S1) ◽  
pp. 2293-2307 ◽  
Author(s):  
Li Li ◽  
M. Shamim Hossain ◽  
Ahmed A. Abd El-Latif ◽  
M. F. Alhamid

Sign in / Sign up

Export Citation Format

Share Document