embedding capacity
Recently Published Documents


TOTAL DOCUMENTS

223
(FIVE YEARS 96)

H-INDEX

15
(FIVE YEARS 4)

Symmetry ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 111
Author(s):  
Mingliang Zhang ◽  
Zhenyu Li ◽  
Pei Zhang ◽  
Yi Zhang ◽  
Xiangyang Luo

Behavioral steganography is a method used to achieve covert communication based on the sender’s behaviors. It has attracted a great deal of attention due to its robustness and wide application scenarios. Current behavioral steganographic methods are still difficult to apply in practice because of their limited embedding capacity. To this end, this paper proposes a novel high-capacity behavioral steganographic method combining timestamp modulation and carrier selection based on social networks. It is a steganographic method where the embedding process and the extraction process are symmetric. When sending a secret message, the method first maps the secret message to a set of high-frequency keywords and divides them into keyword subsets. Then, the posts containing the keyword subsets are retrieved on social networks. Next, the positions of the keywords in the posts are modulated as the timestamps. Finally, the stego behaviors applied to the retrieved posts are generated. This method does not modify the content of the carrier, which ensures the naturalness of the posts. Compared with typical behavioral steganographic methods, the embedding capacity of the proposed method is 29.23∼51.47 times higher than that of others. Compared to generative text steganography, the embedding capacity is improved by 16.26∼23.94%.


2021 ◽  
Vol 38 (6) ◽  
pp. 1637-1646
Author(s):  
KVSV Trinadh Reddy ◽  
S. Narayana Reddy

In distributed m-health communication, it is a major challenge to develop an efficient blind watermarking method to protect the confidential medical data of patients. This paper proposes an efficient blind watermarking for medical images, which boasts a very high embedding capacity, a good robustness, and a strong imperceptibility. Three techniques, namely, discrete cosine transform (DCT), Weber’s descriptors (WDs), and Arnold chaotic map, were integrated to our method. Specifically, the Arnold chaotic map was used to scramble the watermark image. Then, the medical image was partitioned into non-over lapping blocks, and each block was subjected to DCT. After that, the scrambled watermark image data were embedded in the middle-band DCT coefficients of each block, such that two bits were embedded in each block. Simulation results show that the proposed watermarking method provides better imperceptibility, robustness, and computational complexity results with higher embedding capacity than the contrastive method.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Mingliang Zhang ◽  
Xiangyang Luo ◽  
Pei Zhang ◽  
Hao Li ◽  
Yi Zhang ◽  
...  

Social Internet of Things (SIoT) is an emerging field that combines IoT and Internet, which can provide many novel and convenient application scenarios but still faces challenges in data privacy protection. In this paper, we propose a robust behavioral steganography method with high embedding capacity across social networks based on timestamp modulation. Firstly, the IoT devices on the sending end modulate the secret message to be embedded into a timestamp by using the common property on social networks. Secondly, the accounts of multiple social networks are used as the vertices, and the timestamp mapping relationship generated by the interaction behaviors between them is used as the edges to construct a directed secret message graph across social networks. Then, the frequency of interaction behaviors generated by users of mainstream social networks is analyzed; the corresponding timestamps and social networks are used to implement interaction behaviors based on the secret message graph and the frequency of interaction behaviors. Next, we analyze the frequency of interaction behaviors generated by users in mainstream social networks, implement the interaction behaviors according to the secret message graph and the frequency of interaction behaviors in the corresponding timestamps and social networks, and combine the redundant mapping control to complete the embedding of secret message. Finally, the receiver constructs the timestamp mapping relationship through the shared account, key, and other parameters to achieve the extraction of secret message. The algorithm is robust and does not have the problem that existing multimedia-based steganography methods are difficult to extract the embedded messages completely. Compared with existing graph theory-based social network steganography methods, using timestamps and behaviors frequencies to hide message in multiple social networks increases the cost of detecting covert communication and improves concealment of steganography. At the same time, the algorithm uses a directed secret message graph to increase the number of bits carried by each behavior and improves the embedding capacity. A large number of tests have been conducted on mainstream social networks such as Facebook, Twitter, and Weibo. The results show that the proposed method successfully distributes secret message to multiple social networks and achieves complete extraction of embedded message at the receiving end. The embedding capacity is increased by 1.98–4.89 times compared with the existing methods SSN, NGTASS, and SGSIR.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Yunzhao Yang ◽  
Xiaowei Yi ◽  
Xianfeng Zhao ◽  
Jinghong Zhang

MP3 appears in various social networking sites wildly, and it is very suitable to be applied for covert communication indeed. However, almost all social networking sites recompress the uploaded MP3 files, which leads to the ineffectiveness of the existing MP3 steganographic methods. In this paper, a robust MP3 steganographic algorithm is proposed with the ability of multiple compressions resistance. First, we discover a new embedding domain with strong robustness. The scalefactor bands of higher energy are applied as the embedding bands. The message bits are embedded by adjusting the position of the MDCT coefficients with the largest magnitude in the embedding bands. Besides, the embedding and extraction operations are realized in the process of MP3 decoding at the same time. Experimental results illustrate that our proposed method is of strong robustness against multiple MP3 compressions. The bit error rate is less than 1% at the MP3 bitrate of 320 kbps. It is worth mentioning that the proposed method is proved to be applicable to social networking sites, such as SoundCloud, for covert communication. Our method achieves a satisfactory level of embedding capacity, imperceptibility, and undetectability.


2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Yongsheng Ding ◽  
Yunbo Wei ◽  
Shuisheng Zhang ◽  
Shihang Yu

Aiming at the shortcomings of the existing lossless digital watermarking algorithm based on frequency domain in reversibility and embedding capacity, this study proposes a lossless digital image watermarking algorithm based on fractional wavelet transform, which is used for large-capacity reversible information hiding of images. First, the image is transformed by LeGall5/3 fractional wavelet, and then, the watermark is embedded in the high-frequency subband by the histogram shift method. In order to obtain maximum embedding capacity and reduce image distortion, the methods of selecting embedding parameters and stopping parameters are proposed, respectively. At the same time, in order to prevent overflow and reduce additional information, a new method of generating position map is proposed. The experimental results show that Lena is the result of multilayer embedding based on the algorithm in this study. In order to better observe the distortion phenomenon and enlarge the image, the Lena test image is the watermark image obtained after two and three layers of embedding, and its embedding capacity can be 2.7 bpp. It is proved that wavelet transform is suitable for encrypted images to implement covert communication.


2021 ◽  
Vol 13 (6) ◽  
pp. 1-14
Author(s):  
Lianshan Liu ◽  
Xiaoli Wang ◽  
Lingzhuang Meng ◽  
Gang Tian ◽  
Ting Wang

On the premise of guaranteeing the visual effect, in order to improve the security of the image containing digital watermarking and restore the carrier image without distortion, reversible data hiding in chaotic encryption domain based on odevity verification was proposed. The original image was scrambled and encrypted by Henon mapping, and the redundancy between the pixels of the encrypted image was lost. Then, the embedding capacity of watermarking can be improved by using odevity verification, and the embedding location of watermarking can be randomly selected by using logistic mapping. When extracting the watermarking, the embedded data was judged according to the odevity of the pixel value of the embedding position of the watermarking, and the carrier image was restored nondestructively by odevity check image. The experimental results show that the peak signal-to-noise ratio (PSNR) of the original image is above 53 decibels after the image is decrypted and restored after embedding the watermarking in the encrypted domain, and the invisibility is good.


2021 ◽  
Vol 13 (6) ◽  
pp. 0-0

On the premise of guaranteeing the visual effect, in order to improve the security of the image containing digital watermarking and restore the carrier image without distortion, reversible data hiding in chaotic encryption domain based on odevity verification was proposed. The original image was scrambled and encrypted by Henon mapping, and the redundancy between the pixels of the encrypted image was lost. Then, the embedding capacity of watermarking can be improved by using odevity verification, and the embedding location of watermarking can be randomly selected by using logistic mapping. When extracting the watermarking, the embedded data was judged according to the odevity of the pixel value of the embedding position of the watermarking, and the carrier image was restored nondestructively by odevity check image. The experimental results show that the peak signal-to-noise ratio (PSNR) of the original image is above 53 decibels after the image is decrypted and restored after embedding the watermarking in the encrypted domain, and the invisibility is good.


2021 ◽  
Vol 62 ◽  
pp. 102955
Author(s):  
Subhadip Mukherjee ◽  
Sunita Sarkar ◽  
Somnath Mukhopadhyay

2021 ◽  
Vol 11 (21) ◽  
pp. 10157
Author(s):  
Chin-Feng Lee ◽  
Hua-Zhe Wu

In previous research, scholars always think about how to improve the information hiding algorithm and strive to have the largest embedding capacity and better image quality, restoring the original image. This research mainly proposes a new robust and reversible information hiding method, recurrent robust reversible data hiding (triple-RDH), with a recurrent round-trip embedding strategy. We embed the secret message in a quotient image to increase the image robustness. The pixel value is split into two parts, HiSB and LoSB. A recurrent round-trip embedding strategy (referred to as double R-TES) is designed to adjust the predictor and the recursive parameter values, so the pixel value carrying the secret data bits can be first shifted to the right and then shifted to the left, resulting in pixel invariance, so the embedding capacity can be effectively increased repeatedly. Experimental results show that the proposed triple-RDH method can effectively increase the embedding capacity up to 310,732 bits and maintain a certain level of image quality. Compared with the existing pixel error expansion (PEE) methods, the triple-RDH method not only has a high capacity but also has robustness for image processing against unintentional attacks. It can also be used for capacity and image quality according to the needs of the application, performing adjustable embedding.


2021 ◽  
pp. 1-13
Author(s):  
Sha Wang ◽  
Teng Li ◽  
Zifeng Liu ◽  
Dongbo Pan ◽  
Yu Zhang

The embedding capacity and steganography quality are two important performance indicators of data hiding which has practical application value for copyright and intellectual property protection, public information protection and online elections. Many researches presented hiding methods to improve the performance. However, the existing data hiding methods have problems such as low embedding capacity or poor stego-image quality. This paper proposes a new method (Single Pixel Modification, SPM) to improve the performance further. The SPM (Single Pixel Modification) method embeds k secret bits into a cover-pixel with the idea that minimizing the change to cover-pixel and adopting modulus operation based on 2 k . The experimental results show that the proposed method has better performance than methods compared and the highest hiding capacity can reach 4 bits per pixel and the average PSNR of stego-images is 34.83 dB. The source code and related materials are made to public to make it easy for researchers to verify the work and stimulate further research.


Sign in / Sign up

Export Citation Format

Share Document