hamming codes
Recently Published Documents


TOTAL DOCUMENTS

126
(FIVE YEARS 22)

H-INDEX

13
(FIVE YEARS 2)

2022 ◽  
pp. 39-46
Author(s):  
L. R. Vermani
Keyword(s):  

2021 ◽  
Author(s):  
Mohsen El-Bendary ◽  
O El-Badry

Abstract Due to the power efficiency importance of digital signal processing and data protection in different communications systems, this paper proposes an efficient design of different Hamming Codes utilizing Full Swing- Gate Diffusion Input (FS-GDI) approach. The proposed codes design aims to improve the power efficiency and the required area through reducing the required number of transistors. FS-GDI is a new low power VLSI design approach, it is a power effective approach for realizing the different logic gates. In this work, the Hamming codes (11, 7) and (15, 11) are designed by utilizing the original GDI, FS-GDI and the traditional CMOS approaches. The amount of consumed power, delay time, Power Delay Product (PDP) and hardware simplicity-Number of Transistors (No. Ts) are employed as a metrics for evaluating the efficiency of the proposed design compared to the traditional design. The design simulation experiments are executed utilizing Cadence Virtuoso simulator package under 65nm technology. The simulation experiments revealed these proposed codes achieve delay time reduction by 52.91% and 10% for Hamming codes (7, 4) and (11, 7), respectively On the other hand, the Hardware (H/W) of these codes became more simple where the H/W simplicity of the used Hamming codes is reduced 50 % CMOS approaches respectively. From the results analysis, the proposed design achieves efficient power and the delay optimizing of Hamming codes utilizing the FS-GDI approach. On the other hand, the power consumption and area in communications systems due to the encoding process can be reduces.


Author(s):  
Rohitkumar R Upadhyay

Abstract: Hamming codes for all intents and purposes are the first nontrivial family of error-correcting codes that can actually correct one error in a block of binary symbols, which literally is fairly significant. In this paper we definitely extend the notion of error correction to error-reduction and particularly present particularly several decoding methods with the particularly goal of improving the error-reducing capabilities of Hamming codes, which is quite significant. First, the error-reducing properties of Hamming codes with pretty standard decoding definitely are demonstrated and explored. We show a sort of lower bound on the definitely average number of errors present in a decoded message when two errors for the most part are introduced by the channel for for all intents and purposes general Hamming codes, which actually is quite significant. Other decoding algorithms are investigated experimentally, and it generally is definitely found that these algorithms for the most part improve the error reduction capabilities of Hamming codes beyond the aforementioned lower bound of for all intents and purposes standard decoding. Keywords: coding theory, hamming codes, hamming distance


2021 ◽  
Author(s):  
Mohsen El-Bendary ◽  
O. El-Badry

Abstract Due to the power efficiency importance of digital signal processing and data protection in different communications systems, this paper proposes an efficient design of different Hamming Codes utilizing Full Swing- Gate Diffusion Input (FS-GDI) approach. The proposed codes design aims to improve the power efficiency and the required area through reducing the required number of transistors. FS-GDI is a new low power VLSI design approach, it is a power effective approach for realizing the different logic gates. In this work, the Hamming codes (7, 4) and (11, 7) are designed by utilizing the original GDI, FS-GDI and the traditional CMOS approaches. The amount of consumed power, delay time, Power Delay Product (PDP) and hardware simplicity-Number of Transistors (No.Ts) are employed as a metrics for evaluating the efficiency of the proposed design compared to the traditional design. The design simulation experiments are executed utilizing Cadence Virtuoso simulator package under 65nm technology. The simulation experiments revealed these proposed codes achieve delay time reduction by 52.91% and 10% for Hamming codes (7, 4) and (11, 7), respectively On the other hand, the Hardware (H/W) of these codes became more simple where the H/W simplicity of the used Hamming codes is reduced 50 % CMOS approaches respectively. From the results analysis, the proposed design achieves efficient power and the delay optimizing of Hamming codes utilizing the FS-GDI approach. On the other hand, the power consumption and area in communications systems due to the encoding process can be reduces.


Author(s):  
Pavel Chernov ◽  
◽  
Aleksander Shkaraputa ◽  

The article revealed the research of methods for constructing block ciphers and its advantages and disadvantages. The modified algorithm based on the Feistel network using Hamming codes and adding an element of randomness into the encryption key was proposed. Analysis of the main arameters of the algorithm in comparison with Feistel network was performed: resistance to cryptanalysis, execution time, increase in the volume of encrypted data. The analysis revealed the stronger resistance to cryptanalysis than the Feistel network, increased execution time and volume of encrypted data. The potential for building block ciphers based on the algorithm was explored.


Sign in / Sign up

Export Citation Format

Share Document