A Zero-Knowledge Identification Scheme Based on the Discrete Logarithm Problem and Elliptic Curves

Author(s):  
Salma Ezziri ◽  
Omar Khadir
2019 ◽  
Vol 26 ◽  
pp. 22-28
Author(s):  
A.V. ONATSKIY ◽  

We propose a cryptographic protocol with zero-knowledge proof (ZKP) on elliptic curves (EC) using public keys and random messages, allowing to establish the truth of a statement not conveying any additional information about the statement itself. The cryptographic protocols based on zero-knowledge proof allow identification, key exchange and other cryptographic operations to be performed without leakage of sensitive information during the information exchange. The implementation of the cryptographic protocol of the zero-knowledge proof on the basis of the mathematical apparatus of elliptic curves allows to significantly reduce the size of the protocol parameters and increase its cryptographic strength (computational complexity of the breaking). The security of cryptosystems involving elliptic curves is based on the difficulty of solving the elliptic curve discrete logarithm problem. We determine the completeness and correctness of the protocol and give an example of the calculation is given. The cryptographic protocol was modeled in the High-Level Protocol Specification Language, the model validation and verification of the protocol were also performed. The software verification of the cryptographic protocol was performed using the software modules On the Fly Model Checker and Constraint Logic based Attack Searcher. In order to validate the cryptographic protocol resistance to intruder attacks, we used the Security Protocol Animator package for Automated Validation of Internet Security Protocols and Applications. The security of the proposed cryptographic protocol ZKP EC is based on the difficulty of solving the elliptic curve discrete logarithm problem). The recommended elliptical curves according to DSTU 4145-2002 may be used to implement such cryptographic protocol.


2018 ◽  
Vol 51 ◽  
pp. 168-182 ◽  
Author(s):  
Alessandro Amadori ◽  
Federico Pintore ◽  
Massimiliano Sala

2018 ◽  
Vol 12 (2) ◽  
pp. 101-118 ◽  
Author(s):  
Prabhat Kushwaha

Abstract In 2004, Muzereau, Smart and Vercauteren [A. Muzereau, N. P. Smart and F. Vercauteren, The equivalence between the DHP and DLP for elliptic curves used in practical applications, LMS J. Comput. Math. 7 2004, 50–72] showed how to use a reduction algorithm of the discrete logarithm problem to Diffie–Hellman problem in order to estimate lower bound for the Diffie–Hellman problem on elliptic curves. They presented their estimates on various elliptic curves that are used in practical applications. In this paper, we show that a much tighter lower bound for the Diffie–Hellman problem on those curves can be achieved if one uses the multiplicative group of a finite field as auxiliary group. The improved lower bound estimates of the Diffie–Hellman problem on those recommended curves are also presented. Moreover, we have also extended our idea by presenting similar estimates of DHP on some more recommended curves which were not covered before. These estimates of DHP on these curves are currently the tightest which lead us towards the equivalence of the Diffie–Hellman problem and the discrete logarithm problem on these recommended elliptic curves.


2004 ◽  
Vol 7 ◽  
pp. 167-192 ◽  
Author(s):  
F. Hess

AbstractThe Weil descent construction of the GHS attack on the elliptic curve discrete logarithm problem (ECDLP) is generalised in this paper, to arbitrary Artin-Schreier extensions. A formula is given for the characteristic polynomial of Frobenius for the curves thus obtained, as well as a proof that the large cyclic factor of the input elliptic curve is not contained in the kernel of the composition of the conorm and norm maps. As an application, the number of elliptic curves that succumb to the basic GHS attack is considerably increased, thereby further weakening curves over GF2155.Other possible extensions or variations of the GHS attack are discussed, leading to the conclusion that they are unlikely to yield further improvements.


Sign in / Sign up

Export Citation Format

Share Document