identification scheme
Recently Published Documents


TOTAL DOCUMENTS

538
(FIVE YEARS 134)

H-INDEX

28
(FIVE YEARS 4)

2022 ◽  
Vol 2022 ◽  
pp. 1-10
Author(s):  
Ruizhong Du ◽  
Jingze Wang ◽  
Shuang Li

Internet of Things (IoT) device identification is a key step in the management of IoT devices. The devices connected to the network must be controlled by the manager. For this purpose, many schemes are proposed to identify IoT devices, especially the schemes working on the gateway. However, almost all researchers do not pay close attention to the cost. Thus, considering the gateway’s limited storage and computational resources, a new lightweight IoT device identification scheme is proposed. First, the DFI (deep/dynamic flow inspection) technology is utilized to efficiently extract flow-related statistical features based on in-depth studies. Then, combined with symmetric uncertainty and correlation coefficient, we proposed a novel filter feature selection method based on NSGA-III to select effective features for IoT device identification. We evaluate our proposed method by using a real smart home IoT data set and three different ML algorithms. The experimental results showed that our proposed method is lightweight and the feature selection algorithm is also effective, only using 6 features can achieve 99.5% accuracy with a 3-minute time interval.


Author(s):  
Reza Hooshmand ◽  
Alireza Jafari ◽  
Gholamreza Karamali

Author(s):  
Saurav Gupta ◽  
Subhransu Padhee ◽  
Libor Pekar

This study provides a recursive parametric identification scheme for a liquid-saturated steam heat exchanger system. The recursive identification scheme uses block-structured Wiener and Hammerstein models as model structure and recursive least squares estimation scheme as the parameter estimation method. The estimated block-oriented model provides higher accuracy of estimation than linear models provided in the literature. From the simulation results, it is observed that the Wiener model can provide 88% goodness-of-FIT, whereas Hammerstein model can provide 96% goodness-of-FIT using the said technique.


2021 ◽  
Vol 7 ◽  
pp. 1289-1296
Author(s):  
Yucheng Ding ◽  
Xiaohui Wang ◽  
Dongxia Zhang ◽  
Xinying Wang ◽  
Liang Yang ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Xiaopeng Yang ◽  
Hui Zhu ◽  
Songnian Zhang ◽  
Rongxing Lu ◽  
Xuesong Gao

Biometric identification services have been applied to almost all aspects of life. However, how to securely and efficiently identify an individual in a huge biometric dataset is still very challenging. For one thing, biometric data is very sensitive and should be kept secure during the process of biometric identification. On the other hand, searching a biometric template in a large dataset can be very time-consuming, especially when some privacy-preserving measures are adopted. To address this problem, we propose an efficient and privacy-preserving biometric identification scheme based on the FITing-tree, iDistance, and a symmetric homomorphic encryption (SHE) scheme with two cloud servers. With our proposed scheme, the privacy of the user’s identification request and service provider’s dataset is guaranteed, while the computational costs of the cloud servers in searching the biometric dataset can be kept at an acceptable level. Detailed security analysis shows that the privacy of both the biometric dataset and biometric identification request is well protected during the identification service. In addition, we implement our proposed scheme and compare it to a previously reported M-Tree based privacy-preserving identification scheme in terms of computational and communication costs. Experimental results demonstrate that our proposed scheme is indeed efficient in terms of computational and communication costs while identifying a biometric template in a large dataset.


Sign in / Sign up

Export Citation Format

Share Document