Are nonmetric additive-tree representations of numerical proximity data meaningful?

1983 ◽  
Vol 17 (6) ◽  
pp. 475-478 ◽  
Author(s):  
Geert De Soete
1987 ◽  
Vol 4 (2) ◽  
pp. 155-173 ◽  
Author(s):  
Geert De Soete ◽  
J. Douglas Carroll ◽  
Wayne S. DeSarbo

2001 ◽  
Vol 54 (1) ◽  
pp. 103-123 ◽  
Author(s):  
Lawrence Hubert ◽  
Phipps Arabie ◽  
Jacqueline Meulman

Psychometrika ◽  
1982 ◽  
Vol 47 (1) ◽  
pp. 3-24 ◽  
Author(s):  
Sandra Pruzansky ◽  
Amos Tversky ◽  
J. Douglas Carroll

1984 ◽  
Vol 18 (4) ◽  
pp. 387-393 ◽  
Author(s):  
Geert De Soete

2016 ◽  
pp. 397-401
Author(s):  
Gonzalo Navarro ◽  
Kunihiko Sadakane
Keyword(s):  

2020 ◽  
pp. 1-14
Author(s):  
SHOTA OSADA

Abstract We prove the Bernoulli property for determinantal point processes on $ \mathbb{R}^d $ with translation-invariant kernels. For the determinantal point processes on $ \mathbb{Z}^d $ with translation-invariant kernels, the Bernoulli property was proved by Lyons and Steif [Stationary determinantal processes: phase multiplicity, bernoullicity, and domination. Duke Math. J.120 (2003), 515–575] and Shirai and Takahashi [Random point fields associated with certain Fredholm determinants II: fermion shifts and their ergodic properties. Ann. Probab.31 (2003), 1533–1564]. We prove its continuum version. For this purpose, we also prove the Bernoulli property for the tree representations of the determinantal point processes.


Sign in / Sign up

Export Citation Format

Share Document