scholarly journals Isomorphisms between determinantal point processes with translation-invariant kernels and Poisson point processes

2020 ◽  
pp. 1-14
Author(s):  
SHOTA OSADA

Abstract We prove the Bernoulli property for determinantal point processes on $ \mathbb{R}^d $ with translation-invariant kernels. For the determinantal point processes on $ \mathbb{Z}^d $ with translation-invariant kernels, the Bernoulli property was proved by Lyons and Steif [Stationary determinantal processes: phase multiplicity, bernoullicity, and domination. Duke Math. J.120 (2003), 515–575] and Shirai and Takahashi [Random point fields associated with certain Fredholm determinants II: fermion shifts and their ergodic properties. Ann. Probab.31 (2003), 1533–1564]. We prove its continuum version. For this purpose, we also prove the Bernoulli property for the tree representations of the determinantal point processes.

2014 ◽  
Vol 70 (a1) ◽  
pp. C523-C523
Author(s):  
Michael Baake ◽  
Holger Koesters ◽  
Robert Moody

Getting a grasp of what aperiodic order really entails is going to require collecting and understanding many diverse examples. Aperiodic crystals are at the top of the largely unknown iceberg beneath. Here we present a recently studied form of random point process in the (complex) plane which arises as the sets of zeros of a specific class of analytic functions given by power series with randomly chosen coefficients: Gaussian analytic functions (GAF). These point sets differ from Poisson processes by having a sort of built in repulsion between points, though the resulting sets almost surely fail both conditions of the Delone property. Remarkably the point sets that arise as the zeros of GAFs determine a random point process which is, in distribution, invariant under rotation and translation. In addition, there is a logarithmic potential function for which the zeros are the attractors, and the resulting basins of attraction produce tilings of the plane by tiles which are, almost surely, all of the same area. We discuss GAFs along with their tilings and diffraction, and as well note briefly their relationship to determinantal point processes, which are also of physical interest.


Author(s):  
Cesar Cuenca ◽  
Vadim Gorin ◽  
Grigori Olshanski

Abstract We introduce and study a new family of $q$-translation-invariant determinantal point processes on the two-sided $q$-lattice. We prove that these processes are limits of the $q$–$zw$ measures, which arise in the $q$-deformation of harmonic analysis on $U(\infty )$, and express their correlation kernels in terms of Jacobi theta functions. As an application, we show that the $q$–$zw$ measures are diffuse. Our results also hint at a link between the two-sided $q$-lattice and rows/columns of Young diagrams.


Author(s):  
Mattia Cafasso ◽  
Tom Claeys ◽  
Manuela Girotti

Abstract We study Fredholm determinants of a class of integral operators, whose kernels can be expressed as double contour integrals of a special type. Such Fredholm determinants appear in various random matrix and statistical physics models. We show that the logarithmic derivatives of the Fredholm determinants are directly related to solutions of the Painlevé II hierarchy. This confirms and generalizes a recent conjecture by Le Doussal, Majumdar, and Schehr [20]. In addition, we obtain asymptotics at $\pm \infty $ for the Painlevé transcendents and large gap asymptotics for the corresponding point processes.


2020 ◽  
Vol 57 (4) ◽  
pp. 1298-1312
Author(s):  
Martin Dirrler ◽  
Christopher Dörr ◽  
Martin Schlather

AbstractMatérn hard-core processes are classical examples for point processes obtained by dependent thinning of (marked) Poisson point processes. We present a generalization of the Matérn models which encompasses recent extensions of the original Matérn hard-core processes. It generalizes the underlying point process, the thinning rule, and the marks attached to the original process. Based on our model, we introduce processes with a clear interpretation in the context of max-stable processes. In particular, we prove that one of these processes lies in the max-domain of attraction of a mixed moving maxima process.


2021 ◽  
Vol 58 (2) ◽  
pp. 469-483
Author(s):  
Jesper Møller ◽  
Eliza O’Reilly

AbstractFor a determinantal point process (DPP) X with a kernel K whose spectrum is strictly less than one, André Goldman has established a coupling to its reduced Palm process $X^u$ at a point u with $K(u,u)>0$ so that, almost surely, $X^u$ is obtained by removing a finite number of points from X. We sharpen this result, assuming weaker conditions and establishing that $X^u$ can be obtained by removing at most one point from X, where we specify the distribution of the difference $\xi_u: = X\setminus X^u$. This is used to discuss the degree of repulsiveness in DPPs in terms of $\xi_u$, including Ginibre point processes and other specific parametric models for DPPs.


Sign in / Sign up

Export Citation Format

Share Document