Additive-tree representations of incomplete dissimilarity data

1984 ◽  
Vol 18 (4) ◽  
pp. 387-393 ◽  
Author(s):  
Geert De Soete
2001 ◽  
Vol 54 (1) ◽  
pp. 103-123 ◽  
Author(s):  
Lawrence Hubert ◽  
Phipps Arabie ◽  
Jacqueline Meulman

1987 ◽  
Vol 4 (2) ◽  
pp. 155-173 ◽  
Author(s):  
Geert De Soete ◽  
J. Douglas Carroll ◽  
Wayne S. DeSarbo

2016 ◽  
pp. 397-401
Author(s):  
Gonzalo Navarro ◽  
Kunihiko Sadakane
Keyword(s):  

2020 ◽  
pp. 1-14
Author(s):  
SHOTA OSADA

Abstract We prove the Bernoulli property for determinantal point processes on $ \mathbb{R}^d $ with translation-invariant kernels. For the determinantal point processes on $ \mathbb{Z}^d $ with translation-invariant kernels, the Bernoulli property was proved by Lyons and Steif [Stationary determinantal processes: phase multiplicity, bernoullicity, and domination. Duke Math. J.120 (2003), 515–575] and Shirai and Takahashi [Random point fields associated with certain Fredholm determinants II: fermion shifts and their ergodic properties. Ann. Probab.31 (2003), 1533–1564]. We prove its continuum version. For this purpose, we also prove the Bernoulli property for the tree representations of the determinantal point processes.


Author(s):  
Jinze Liu ◽  
Qi Zhang ◽  
Wei Wang ◽  
Leonard McMillan ◽  
Jan Prins
Keyword(s):  

2016 ◽  
Vol 22 (9) ◽  
pp. 2200-2213 ◽  
Author(s):  
Quirijn W. Bouts ◽  
Tim Dwyer ◽  
Jason Dykes ◽  
Bettina Speckmann ◽  
Sarah Goodwin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document