On the use of stretched-exponential functions for both linear viscoelastic creep and stress relaxation

1997 ◽  
Vol 36 (3) ◽  
pp. 320-329 ◽  
Author(s):  
Guy C. Berry ◽  
Donald J. Plazek
2004 ◽  
Vol 841 ◽  
Author(s):  
Mark R. VanLandingham ◽  
Peter L. Drzal ◽  
Christopher C. White

ABSTRACTInstrumented indentation was used to characterize the mechanical response of polymeric materials. A model based on contact between a rigid probe and a linear viscoelastic material was used to calculate values for creep compliance and stress relaxation modulus for epoxy, poly(methyl methacrylate) (PMMA), and two poly(dimethyl siloxane) (PDMS) elastomers. Results from bulk rheometry studies were used for comparison to the indentation creep and stress relaxation results. For the two glassy polymers, the use of sharp pyramidal tips produced responses that were considerably more compliant (less stiff) than rheometry values. Additional study of the deformation remaining in epoxy after creep testing revealed that a large portion of the creep displacement measured was due to post-yield flow. Indentation creep measurements of the epoxy using a rounded conical tip also produced nonlinear responses, but the creep compliance values appeared to approach linear viscoelastic values with decreasing creep force. Responses measured for the PDMS were mainly linear elastic, but the filled PDMS exhibited some time-dependence and nonlinearity in both rheometry and indentation measurements.


1975 ◽  
Vol 7 (1) ◽  
pp. 27-31
Author(s):  
S. P. Borisov ◽  
N. I. Borshchev ◽  
M. N. Stepnov ◽  
I. I. Khazanov

2002 ◽  
Vol 16 (17n18) ◽  
pp. 2655-2661
Author(s):  
W. H. LI ◽  
G. CHEN ◽  
S. H. YEO ◽  
H. DU

In this paper, the experimental and modeling study and analysis of the stress relaxation characteristics of magnetorheological (MR) fluids under step shear are presented. The experiments are carried out using a rheometer with parallel-plate geometry. The applied strain varies from 0.01% to 100%, covering both the pre-yield and post-yield regimes. The effects of step strain, field strength, and temperature on the stress modulus are addressed. For small step strain ranges, the stress relaxation modulus G(t,γ) is independent of step strain, where MR fluids behave as linear viscoelastic solids. For large step strain ranges, the stress relaxation modulus decreases gradually with increasing step strain. Morever, the stress relaxation modulus G(t,γ) was found to obey time-strain factorability. That is, G(t,γ) can be represented as the product of a linear stress relaxation G(t) and a strain-dependent damping function h(γ). The linear stress relaxation modulus is represented as a three-parameter solid viscoelastic model, and the damping function h(γ) has a sigmoidal form with two parameters. The comparison between the experimental results and the model-predicted values indicates that this model can accurately describe the relaxation behavior of MR fluids under step strains.


Author(s):  
Alina Sabitova ◽  
Viktoriya M. Yarushina ◽  
Sergey Stanchits ◽  
Vladimir Stukachev ◽  
Lyudmila Khakimova ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document