Stress Relaxation
Recently Published Documents





Mohammadhossein Ebrahimi ◽  
Mikko A. J. Finnilä ◽  
Aleksandra Turkiewicz ◽  
Martin Englund ◽  
Simo Saarakkala ◽  

AbstractOsteoarthritis (OA) degrades articular cartilage and weakens its function. Modern fibril-reinforced poroelastic (FRPE) computational models can distinguish the mechanical properties of main cartilage constituents, namely collagen, proteoglycans, and fluid, thus, they can precisely characterize the complex mechanical behavior of the tissue. However, these properties are not known for human femoral condyle cartilage. Therefore, we aimed to characterize them from human subjects undergoing knee replacement and from deceased donors without known OA. Multi-step stress-relaxation measurements coupled with sample-specific finite element analyses were conducted to obtain the FRPE material properties. Samples were graded using OARSI scoring to determine the severity of histopathological cartilage degradation. The results suggest that alterations in the FRPE properties are not evident in the moderate stages of cartilage degradation (OARSI 2-3) as compared with normal tissue (OARSI 0-1). Drastic deterioration of the FRPE properties was observed in severely degraded cartilage (OARSI 4). We also found that the FRPE properties of femoral condyle cartilage related to the collagen network (initial fibril-network modulus) and proteoglycan matrix (non-fibrillar matrix modulus) were greater compared to tibial and patellar cartilage in OA. These findings may inform cartilage tissue-engineering efforts and help to improve the accuracy of cartilage representations in computational knee joint models.

2021 ◽  
Vol 15 (2) ◽  
Alok Ranjan ◽  
Anil Kumar Biradar ◽  
Ankita Patel ◽  
Vanessa Varghese ◽  
Ankita Pawar ◽  

Objectives: This studied aimed to measure the yield strength and stress relaxation properties of three commercially available thermoplastic aligner materials. Methods: The three different thermoplastics aligner materials Duran (Scheu, Iserlohn, Germany), Erkodur (Pfalzgrafenweiler, Erkodent, Germany) and Track (Forestadent, Germany) were selected. A three-point bending test was carried out via the universal testing machine to measure their yield strength and stress relaxation properties. An independent t- test was performed for intergroup comparison. P-value < 0.05 was set as the level of significance. Results: All the selected three polymers liberate a notable amount of stress during 24 hours. The highest stress release was observed in Duran i.e. 18.96 N/cm2 as compared to Erkodur, which was 13.96 N/cm2 and Track, which was 13.18 N/cm2. The yield strength of Duran was the highest (75.85 Mpa) compared to Track and Erkodur with the yield strength of 52.75 Mpa and 55.86 Mpa, respectively. Conclusions: Tooth movement is influenced by the composition of aligner material and its thickness. Duran had the highest stress release and yield strength. Stress released by different aligners exceeds around half of the initial stress value, which directly affects the orthodontic force application and subsequent tooth movement.

Erfan Maleki ◽  
Okan Unal ◽  
Mario Guagliano ◽  
Sara Bagherifard

AbstractIn this study, the effect of kinetic energy of the shot peening process on microstructure, mechanical properties, residual stress, fatigue behavior and residual stress relaxation under fatigue loading of AISI 316L stainless steel were investigated to figure out the mechanisms of fatigue crack initiation and failure. Varieties of experiments were applied to obtain the results including microstructural observations, measurements of hardness, roughness, induced residual stress and residual stress relaxation as well as axial fatigue test. Then deep learning approach through neural networks was used for modelling of mechanical properties and fatigue behavior of shot peened material. Comprehensive parametric analyses were performed to survey the effects of different key parameters. Afterward, according to the results of neural network analysis, further experiments were performed to optimize and experimentally validate the desirable parameters. Based on the obtained results the favorable range of shot peening coverage regarding improved mechanical properties and fatigue behavior was identified as no more than 1750% considering Almen intensity of 21 A (0.001 inch). Graphic abstract

2021 ◽  
Vol 19 (1) ◽  
Kai-Yang Wang ◽  
Xiang-Yun Jin ◽  
Yu-Hui Ma ◽  
Wei-Jie Cai ◽  
Wei-Yuan Xiao ◽  

Abstract Background Cartilage injury and pathological degeneration are reported in millions of patients globally. Cartilages such as articular hyaline cartilage are characterized by poor self-regeneration ability due to lack of vascular tissue. Current treatment methods adopt foreign cartilage analogue implants or microfracture surgery to accelerate tissue repair and regeneration. These methods are invasive and are associated with the formation of fibrocartilage, which warrants further exploration of new cartilage repair materials. The present study aims to develop an injectable modified gelatin hydrogel. Method The hydrogel effectively adsorbed proteoglycans secreted by chondrocytes adjacent to the cartilage tissue in situ, and rapidly formed suitable chondrocyte survival microenvironment modified by ε-poly-L-lysine (EPL). Besides, dynamic covalent bonds were introduced between glucose and phenylboronic acids (PBA). These bonds formed reversible covalent interactions between the cis−diol groups on polyols and the ionic boronate state of PBA. PBA-modified hydrogel induced significant stress relaxation, which improved chondrocyte viability and cartilage differentiation of stem cells. Further, we explored the ability of these hydrogels to promote chondrocyte viability and cartilage differentiation of stem cells through chemical and mechanical modifications. Results In vivo and in vitro results demonstrated that the hydrogels exhibited efficient biocompatibility. EPL and PBA modified GelMA hydrogel (Gel-EPL/B) showed stronger activity on chondrocytes compared to the GelMA control group. The Gel-EPL/B group induced the secretion of more extracellular matrix and improved the chondrogenic differentiation potential of stem cells. Finally, thus hydrogel promoted the tissue repair of cartilage defects. Conclusion Modified hydrogel is effective in cartilage tissue repair.

Jan Schubnell ◽  
Eva Carl ◽  
Majid Farajian ◽  
Stefanos Gkatzogiannis ◽  
Peter Knödel ◽  

Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3856
Jae-Hyeong YU ◽  
Chang-Whan Lee

In this study, the time-dependent mechanical behavior of the magnesium alloy sheet (AZ31B) was investigated through the creep and stress relaxation tests with respect to the temperature and pre-strain. The microstructure changes during creep and stress relaxation were investigated. As the tensile deformation increased in the material, twinning and dynamic recrystallization occurred, especially after the plastic instability. As a result, AZ31B showed lower resistance to creep and stress relaxation due to dynamic recrystallization. Additionally, time-dependent springback characteristics in the V- and L-bending processes concerning the holding time and different forming conditions were investigated. We analyzed changes of microstructure at each forming temperature and process. The uniaxial tensile creep test was conducted to compare the microstructures in various pre-strain conditions with those at the secondary creep stage. For the bending process, the change of the microstructure after the forming was compared to that with punch holding maintained for 1000 s after forming. Due to recrystallization, with the holding time in the die set of 60 s, the springback angle decreased by nearly 70%. Increased holding time in the die set resulted in a reduced springback angle.

2021 ◽  
Jonas Hazur ◽  
Nadine Endrizzi ◽  
Dirk W. Schubert ◽  
Aldo R. Boccaccini ◽  
Ben Fabry

The viscoelastic behavior of hydrogel matrices sensitively influences the cell behavior in 3D culture and biofabricated tissue model systems. Previous reports have demonstrated that cells tend to adhere, spread, migrate and proliferate better in hydrogels with pronounced stress relaxation. However, it is currently unknown if cells respond more sensitively to the amplitude of stress relaxation, or to the relaxation time constant. To test this, we compare the behavior of fibroblasts cultured for up to 10 days in alginate and oxidized alginate hydrogels with similar Young's moduli but diverging stress relaxation behavior. We find that fibroblasts elongate, migrate and proliferate better in hydrogels that display a higher stress relaxation amplitude. By contrast, the cells' response to the relaxation time constant was less pronounced and less consistent. Together, these data suggest that it is foremost the stress relaxation amplitude of the matrix that determines the ability of cells to locally penetrate and remodel the matrix, which subsequently leads to better spreading, faster migration, and higher cell proliferation. We conclude that the stress relaxation amplitude is a central design parameter for optimizing cell behavior in 3-D hydrogels.

2021 ◽  
Vol 2021 ◽  
pp. 1-8
Loren Toussaint ◽  
Quang Anh Nguyen ◽  
Claire Roettger ◽  
Kiara Dixon ◽  
Martin Offenbächer ◽  

Research suggests that multiple forms of relaxation training (e.g., progressive muscle relaxation, meditation, breathing exercises, visualization, and autogenics) can help individuals reduce stress, enhance relaxation states, and improve overall well-being. We examined three different, commonly used approaches to stress relaxation—progressive muscle relaxation, deep breathing, and guided imagery—and evaluated them in a head-to-head comparison against each other and a control condition. Sixty healthy undergraduate participants were randomized to one of the four conditions and completed 20 minutes of progressive muscle relaxation, deep breathing, or guided imagery training that was delivered by recorded audio instruction. Baseline and follow-up assessment of psychological relaxation states were completed. Physiological relaxation was also assessed continuously using measures of electrodermal activity and heart rate. Results showed that progressive muscle relaxation, deep breathing, and guided imagery all increased the state of relaxation for participants in those groups, compared to participants in the control group. In each case, the increase was statistically significant and although the groups did not differ on relaxation before training, all groups were significantly higher on relaxation after training, as compared to the control group. Progressive muscle relaxation and guided imagery showed an immediate linear trend toward physiological relaxation, compared to the control group, and the deep breathing group showed an immediate increase in physiological arousal followed quickly by a return to initial levels. Our results lend support to the body of research showing that stress relaxation training can be effective in improving relaxation states at both the psychological and physiological level. Future research could examine stress relaxation techniques in a similar manner using designs where multiple techniques can be compared in the same samples.

Wufan Chen ◽  
Xiaoyuan Wang ◽  
Yabin Yan ◽  
Takashi Sumigawa ◽  
Takayuki Kitamura ◽  

Export Citation Format

Share Document