Kripke bundles for intermediate predicate logics and Kripke frames for intuitionistic modal logics

Studia Logica ◽  
1990 ◽  
Vol 49 (3) ◽  
pp. 289-306 ◽  
Author(s):  
Nobu -Yuki Suzuki
Studia Logica ◽  
1985 ◽  
Vol 44 (1) ◽  
pp. 39-70 ◽  
Author(s):  
Kosta Došen

2019 ◽  
Vol 27 (4) ◽  
pp. 596-623
Author(s):  
Zhe Lin ◽  
Minghui Ma

Abstract Intuitionistic modal logics are extensions of intuitionistic propositional logic with modal axioms. We treat with two modal languages ${\mathscr{L}}_\Diamond $ and $\mathscr{L}_{\Diamond ,\Box }$ which extend the intuitionistic propositional language with $\Diamond $ and $\Diamond ,\Box $, respectively. Gentzen sequent calculi are established for several intuitionistic modal logics. In particular, we introduce a Gentzen sequent calculus for the well-known intuitionistic modal logic $\textsf{MIPC}$. These sequent calculi admit cut elimination and subformula property. They are decidable.


Studia Logica ◽  
1985 ◽  
Vol 44 (1) ◽  
pp. 79-85 ◽  
Author(s):  
Dimiter Vakarelov

2019 ◽  
Vol 84 (02) ◽  
pp. 533-588 ◽  
Author(s):  
STANISLAV KIKOT ◽  
AGI KURUCZ ◽  
YOSHIHITO TANAKA ◽  
FRANK WOLTER ◽  
MICHAEL ZAKHARYASCHEV

AbstractOur concern is the completeness problem for spi-logics, that is, sets of implications between strictly positive formulas built from propositional variables, conjunction and modal diamond operators. Originated in logic, algebra and computer science, spi-logics have two natural semantics: meet-semilattices with monotone operators providing Birkhoff-style calculi and first-order relational structures (aka Kripke frames) often used as the intended structures in applications. Here we lay foundations for a completeness theory that aims to answer the question whether the two semantics define the same consequence relations for a given spi-logic.


1990 ◽  
Vol 55 (3) ◽  
pp. 1099-1124 ◽  
Author(s):  
Pierluigi Minari ◽  
Mitio Takano ◽  
Hiroakira Ono

AbstractFor each ordinal α > 0, L(α) is the intermediate predicate logic characterized by the class of all Kripke frames with the poset α and with constant domain. This paper will be devoted to a study of logics of the form L(α). It will be shown that for each uncountable ordinal of the form α + η with a finite or a countable η(> 0), there exists a countable ordinal of the form β + η such that L(α + η) = L(β + η). On the other hand, such a reduction of ordinals to countable ones is impossible for a logic L(α) if α is an uncountable regular ordinal. Moreover, it will be proved that the mapping L is injective if it is restricted to ordinals less than ωω, i.e. α ≠ β implies L(α) ≠ L(β) for each ordinal α, β ≤ ωω.


2007 ◽  
Vol 72 (1) ◽  
pp. 26-44 ◽  
Author(s):  
Arnold Beckmann ◽  
Norbert Preining

AbstractWe investigate the relation between intermediate predicate logics based on countable linear Kripke frames with constant domains and Gödel logics. We show that for any such Kripke frame there is a Gödel logic which coincides with the logic defined by this Kripke frame on constant domains and vice versa. This allows us to transfer several recent results on Gödel logics to logics based on countable linear Kripke frames with constant domains: We obtain a complete characterisation of axiomatisability of logics based on countable linear Kripke frames with constant domains. Furthermore, we obtain that the total number of logics defined by countable linear Kripke frames on constant domains is countable.


2019 ◽  
Vol 30 (2) ◽  
pp. 549-560 ◽  
Author(s):  
Mikhail Rybakov ◽  
Dmitry Shkatov

Abstract We investigate the relationship between recursive enumerability and elementary frame definability in first-order predicate modal logic. On one hand, it is well known that every first-order predicate modal logic complete with respect to an elementary class of Kripke frames, i.e. a class of frames definable by a classical first-order formula, is recursively enumerable. On the other, numerous examples are known of predicate modal logics, based on ‘natural’ propositional modal logics with essentially second-order Kripke semantics, that are either not recursively enumerable or Kripke incomplete. This raises the question of whether every Kripke complete, recursively enumerable predicate modal logic can be characterized by an elementary class of Kripke frames. We answer this question in the negative, by constructing a normal predicate modal logic which is Kripke complete, recursively enumerable, but not complete with respect to an elementary class of frames. We also present an example of a normal predicate modal logic that is recursively enumerable, Kripke complete, and not complete with respect to an elementary class of rooted frames, but is complete with respect to an elementary class of frames that are not rooted.


Sign in / Sign up

Export Citation Format

Share Document