constant domains
Recently Published Documents


TOTAL DOCUMENTS

93
(FIVE YEARS 16)

H-INDEX

25
(FIVE YEARS 2)

2022 ◽  
Vol 12 ◽  
Author(s):  
Zizhang Sheng ◽  
Jude S. Bimela ◽  
Phinikoula S. Katsamba ◽  
Saurabh D. Patel ◽  
Yicheng Guo ◽  
...  

Accumulation of somatic hypermutation (SHM) is the primary mechanism to enhance the binding affinity of antibodies to antigens in vivo. However, the structural basis of the effects of many SHMs remains elusive. Here, we integrated atomistic molecular dynamics (MD) simulation and data mining to build a high-throughput structural bioinformatics pipeline to study the effects of individual and combination SHMs on antibody conformation, flexibility, stability, and affinity. By applying this pipeline, we characterized a common mechanism of modulation of heavy-light pairing orientation by frequent SHMs at framework positions 39H, 91H, 38L, and 87L through disruption of a conserved hydrogen-bond network. Q39LH alone and in combination with light chain framework 4 (FWR4L) insertions further modulated the elbow angle between variable and constant domains of many antibodies, resulting in improved binding affinity for a subset of anti-HIV-1 antibodies. Q39LH also alleviated aggregation induced by FWR4L insertion, suggesting remote epistasis between these SHMs. Altogether, this study provides tools and insights for understanding antibody affinity maturation and for engineering functionally improved antibodies.


Author(s):  
Sander J. Tilburg ◽  
Bart C. Jacobs ◽  
Pleuni Ooijevaar‐de Heer ◽  
Willem‐Jan R. Fokkink ◽  
Ruth Huizinga ◽  
...  

Cancers ◽  
2021 ◽  
Vol 13 (17) ◽  
pp. 4379
Author(s):  
Noemí Muñoz-García ◽  
Margarida Lima ◽  
Neus Villamor ◽  
F. Javier Morán-Plata ◽  
Susana Barrena ◽  
...  

A single antibody (anti-TRBC1; JOVI-1 antibody clone) against one of the two mutually exclusive T-cell receptor β-chain constant domains was identified as a potentially useful flow-cytometry (FCM) marker to assess Tαβ-cell clonality. We optimized the TRBC1-FCM approach for detecting clonal Tαβ-cells and validated the method in 211 normal, reactive and pathological samples. TRBC1 labeling significantly improved in the presence of CD3. Purified TRBC1+ and TRBC1− monoclonal and polyclonal Tαβ-cells rearranged TRBJ1 in 44/47 (94%) and TRBJ1+TRBJ2 in 48 of 48 (100%) populations, respectively, which confirmed the high specificity of this assay. Additionally, TRBC1+/TRBC1− ratios within different Tαβ-cell subsets are provided as reference for polyclonal cells, among which a bimodal pattern of TRBC1-expression profile was found for all TCRVβ families, whereas highly-variable TRBC1+/TRBC1− ratios were observed in more mature vs. naïve Tαβ-cell subsets (vs. total T-cells). In 112/117 (96%) samples containing clonal Tαβ-cells in which the approach was validated, monotypic expression of TRBC1 was confirmed. Dilutional experiments showed a level of detection for detecting clonal Tαβ-cells of ≤10−4 in seven out of eight pathological samples. These results support implementation of the optimized TRBC1-FCM approach as a fast, specific and accurate method for assessing T-cell clonality in diagnostic-FCM panels, and for minimal (residual) disease detection in mature Tαβ+ leukemia/lymphoma patients.


2021 ◽  
Vol 26 ◽  
pp. 100959
Author(s):  
Filippo Benedetti ◽  
Florian Stracke ◽  
Gerhard Stadlmayr ◽  
Katharina Stadlbauer ◽  
Florian Rüker ◽  
...  

Biology ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 140
Author(s):  
Umberto Oreste ◽  
Alessia Ametrano ◽  
Maria Rosaria Coscia

The vertebrate immune system provides a powerful defense because of the ability to potentially recognize an unlimited number of pathogens. The antibody molecule, also termed immunoglobulin (Ig) is one of the major mediators of the immune response. It is built up from two types of Ig domains: the variable domain, which provides the capability to recognize and bind a potentially infinite range of foreign substances, and the constant domains, which exert the effector functions. In the last 20 years, advances in our understanding of the molecular mechanisms and structural features of antibody in mammals and in a variety of other organisms have uncovered the underlying principles and complexity of this fundamental molecule. One notable evolutionary topic is the origin and evolution of antibody. Many aspects have been clearly stated, but some others remain limited or obscure. By considering a wide range of prokaryotic and eukaryotic organisms through a literature survey about the topic, we have provided an integrated view of the emergence of antibodies in evolution and underlined the very ancient origins.


Author(s):  
Tim Lyon

Abstract This paper studies the relationship between labelled and nested calculi for propositional intuitionistic logic, first-order intuitionistic logic with non-constant domains and first-order intuitionistic logic with constant domains. It is shown that Fitting’s nested calculi naturally arise from their corresponding labelled calculi—for each of the aforementioned logics—via the elimination of structural rules in labelled derivations. The translational correspondence between the two types of systems is leveraged to show that the nested calculi inherit proof-theoretic properties from their associated labelled calculi, such as completeness, invertibility of rules and cut admissibility. Since labelled calculi are easily obtained via a logic’s semantics, the method presented in this paper can be seen as one whereby refined versions of labelled calculi (containing nested calculi as fragments) with favourable properties are derived directly from a logic’s semantics.


2020 ◽  
Vol 75 (6) ◽  
pp. 1580-1587 ◽  
Author(s):  
Luciana Lepore ◽  
Claudia Fabrizio ◽  
Davide Fiore Bavaro ◽  
Eugenio Milano ◽  
Anna Volpe ◽  
...  

Abstract Objectives Fostemsavir, a novel attachment inhibitor targeting the HIV-1 gp120, has demonstrated wide in vitro activity. However, the high rate of HIV gp120 substitutions could jeopardize its efficacy. We investigated envelope (env) substitutions at positions associated with resistance to fostemsavir in patients with a new HIV-1 diagnosis according to HIV subtype and tropism. Methods Gp120 sequences from 409 subjects were retrospectively analysed and the presence of the L116P, A204D, S375H/M/T, M426L, M434I and M475I mutations was evaluated. Other amino acid changes at the same positions were also recorded. The variability at each amino acid position was evaluated using Shannon entropy. Results The frequency of mutations was: S375T (13.2%); M426L (6.8%); M434I (2.9%); M475I (2.7%); S375H (1.0%)/M (0.8%) and L116P (0.31%). Statistically significant differences were found at positions 375 (R5/non-R5 strains and B/non-B subtypes) and 426 (B/non-B subtypes); post hoc analysis revealed that significance for position 375 was steered by S375T while for position 426 significance was governed by unusual substitutions, in particular M426R (B/non-B, P < 0.00001). The variability of env constant domains appeared to be more relevant in the non-B virus population. Conclusions In conclusion, gp120 substitutions were detected in different subtypes and in both R5 and non-R5 variants. Despite the great variability of gp120, the frequency of mutations was low overall and the predominant substitution was S375T, the role of which in reducing fostemsavir efficacy is less substantial.


2020 ◽  
Vol 30 (1) ◽  
pp. 193-216
Author(s):  
Melvin Fitting ◽  
Felipe Salvatore

Abstract Justification logic is a term used to identify a relatively new family of modal-like logics. There is an established literature about propositional justification logic, but incursions on the first-order case are scarce. In this paper we present a constant domain semantics for the first-order logic of proofs with the Barcan Formula (FOLPb); then we prove Soundness and Completeness Theorems. A monotonic semantics for a version of this logic without the Barcan Formula is already in the literature, but constant domains require substantial new machinery, which may prove useful in other contexts as well. Although we work mainly with one system, we also indicate how to generalize these results for the quantified version of JT45, the justification counterpart of the modal logic S5. We believe our methods are more generally applicable, but initially examining specific cases should make the work easier to follow.


2019 ◽  
Vol 117 (1) ◽  
pp. 292-299 ◽  
Author(s):  
Lynn E. Macdonald ◽  
Karoline A. Meagher ◽  
Matthew C. Franklin ◽  
Natasha Levenkova ◽  
Johanna Hansen ◽  
...  

We describe a Kappa-on-Heavy (KoH) mouse that produces a class of highly diverse, fully human, antibody-like agents. This mouse was made by replacing the germline variable sequences of both the Ig heavy-chain (IgH) and Ig kappa (IgK) loci with the human IgK germline variable sequences, producing antibody-like molecules with an antigen binding site made up of 2 kappa variable domains. These molecules, named KoH bodies, structurally mimic naturally existing Bence-Jones light-chain dimers in their variable domains and remain wild-type in their antibody constant domains. Unlike artificially diversified, nonimmunoglobulin alternative scaffolds (e.g., DARPins), KoH bodies consist of a configuration of normal Ig scaffolds that undergo natural diversification in B cells. Monoclonal KoH bodies have properties similar to those of conventional antibodies but exhibit an enhanced ability to bind small molecules such as the endogenous cardiotonic steroid marinobufagenin (MBG) and nicotine. A comparison of crystal structures of MBG bound to a KoH Fab versus a conventional Fab showed that the KoH body has a much deeper binding pocket, allowing MBG to be held 4 Å further down into the combining site between the 2 variable domains.


Sign in / Sign up

Export Citation Format

Share Document