Asymptotic densities of stopping times associated with tests of power one

1982 ◽  
Vol 61 (4) ◽  
pp. 501-511 ◽  
Author(s):  
C. Jennen ◽  
H. R. Lerche
2020 ◽  
Vol 70 (3) ◽  
pp. 657-666
Author(s):  
Bingzhe Hou ◽  
Yue Xin ◽  
Aihua Zhang

AbstractLet x = $\begin{array}{} \displaystyle \{x_n\}_{n=1}^{\infty} \end{array}$ be a sequence of positive numbers, and 𝓙x be the collection of all subsets A ⊆ ℕ such that $\begin{array}{} \displaystyle \sum_{k\in A} \end{array}$xk < +∞. The aim of this article is to study how large the summable subsequence could be. We define the upper density of summable subsequences of x as the supremum of the upper asymptotic densities over 𝓙x, SUD in brief, and we denote it by D*(x). Similarly, the lower density of summable subsequences of x is defined as the supremum of the lower asymptotic densities over 𝓙x, SLD in brief, and we denote it by D*(x). We study the properties of SUD and SLD, and also give some examples. One of our main results is that the SUD of a non-increasing sequence of positive numbers tending to zero is either 0 or 1. Furthermore, we obtain that for a non-increasing sequence, D*(x) = 1 if and only if $\begin{array}{} \displaystyle \liminf_{k\to\infty}nx_n=0, \end{array}$ which is an analogue of Cauchy condensation test. In particular, we prove that the SUD of the sequence of the reciprocals of all prime numbers is 1 and its SLD is 0. Moreover, we apply the results in this topic to improve some results for distributionally chaotic linear operators.


2021 ◽  
Vol 14 (3) ◽  
pp. 130
Author(s):  
Jonas Al-Hadad ◽  
Zbigniew Palmowski

The main objective of this paper is to present an algorithm of pricing perpetual American put options with asset-dependent discounting. The value function of such an instrument can be described as VAPutω(s)=supτ∈TEs[e−∫0τω(Sw)dw(K−Sτ)+], where T is a family of stopping times, ω is a discount function and E is an expectation taken with respect to a martingale measure. Moreover, we assume that the asset price process St is a geometric Lévy process with negative exponential jumps, i.e., St=seζt+σBt−∑i=1NtYi. The asset-dependent discounting is reflected in the ω function, so this approach is a generalisation of the classic case when ω is constant. It turns out that under certain conditions on the ω function, the value function VAPutω(s) is convex and can be represented in a closed form. We provide an option pricing algorithm in this scenario and we present exact calculations for the particular choices of ω such that VAPutω(s) takes a simplified form.


2008 ◽  
Vol 45 (04) ◽  
pp. 1039-1059 ◽  
Author(s):  
Marius Costeniuc ◽  
Michaela Schnetzer ◽  
Luca Taschini

We study investment and disinvestment decisions in situations where there is a time lagd&gt; 0 from the timetwhen the decision is taken to the timet+dwhen the decision is implemented. In this paper we apply the probabilistic approach to the combined entry and exit decisions under the Parisian implementation delay. In particular, we prove the independence between Parisian stopping times and a general Brownian motion with drift stopped at the stopping time. Relying on this result, we solve the constrained maximization problem, obtaining an analytic solution to the optimal ‘starting’ and ‘stopping’ levels. We compare our results with the instantaneous entry and exit situation, and show that an increase in the uncertainty of the underlying process hastens the decision to invest or disinvest, extending a result of Bar-Ilan and Strange (1996).


1997 ◽  
Vol 34 (1) ◽  
pp. 66-73 ◽  
Author(s):  
S. E. Graversen ◽  
G. Peškir

The solution is presented to all optimal stopping problems of the form supτE(G(|Β τ |) – cτ), where is standard Brownian motion and the supremum is taken over all stopping times τ for B with finite expectation, while the map G : ℝ+ → ℝ satisfies for some being given and fixed. The optimal stopping time is shown to be the hitting time by the reflecting Brownian motion of the set of all (approximate) maximum points of the map . The method of proof relies upon Wald's identity for Brownian motion and simple real analysis arguments. A simple proof of the Dubins–Jacka–Schwarz–Shepp–Shiryaev (square root of two) maximal inequality for randomly stopped Brownian motion is given as an application.


1977 ◽  
Vol 9 (03) ◽  
pp. 566-587 ◽  
Author(s):  
Priscilla Greenwood ◽  
Moshe Shaked

Two Wiener-Hopf type factorization identities for multivariate distributions are introduced. Properties of associated stopping times are derived. The structure that produces one factorization also provides the unique solution of the Wiener-Hopf convolution equation on a convex cone in R d . Some applications for multivariate storage and queueing systems are indicated. For a few cases explicit formulas are obtained for the transforms of the associated stopping times. A result of Kemperman is extended.


Sign in / Sign up

Export Citation Format

Share Document