probabilistic approach
Recently Published Documents


TOTAL DOCUMENTS

4178
(FIVE YEARS 941)

H-INDEX

72
(FIVE YEARS 9)

Author(s):  
Iqra Muneer ◽  
Rao Muhammad Adeel Nawab

Cross-Lingual Text Reuse Detection (CLTRD) has recently attracted the attention of the research community due to a large amount of digital text readily available for reuse in multiple languages through online digital repositories. In addition, efficient machine translation systems are freely and readily available to translate text from one language into another, which makes it quite easy to reuse text across languages, and consequently difficult to detect it. In the literature, the most prominent and widely used approach for CLTRD is Translation plus Monolingual Analysis (T+MA). To detect CLTR for English-Urdu language pair, T+MA has been used with lexical approaches, namely, N-gram Overlap, Longest Common Subsequence, and Greedy String Tiling. This clearly shows that T+MA has not been thoroughly explored for the English-Urdu language pair. To fulfill this gap, this study presents an in-depth and detailed comparison of 26 approaches that are based on T+MA. These approaches include semantic similarity approaches (semantic tagger based approaches, WordNet-based approaches), probabilistic approach (Kullback-Leibler distance approach), monolingual word embedding-based approaches siamese recurrent architecture, and monolingual sentence transformer-based approaches for English-Urdu language pair. The evaluation was carried out using the CLEU benchmark corpus, both for the binary and the ternary classification tasks. Our extensive experimentation shows that our proposed approach that is a combination of 26 approaches obtained an F 1 score of 0.77 and 0.61 for the binary and ternary classification tasks, respectively, and outperformed the previously reported approaches [ 41 ] ( F 1 = 0.73) for the binary and ( F 1 = 0.55) for the ternary classification tasks) on the CLEU corpus.


Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 609
Author(s):  
Roman Meshcheryakov ◽  
Andrey Iskhakov ◽  
Mark Mamchenko ◽  
Maria Romanova ◽  
Saygid Uvaysov ◽  
...  

The paper proposes an approach to assessing the allowed signal-to-noise ratio (SNR) for light detection and ranging (LiDAR) of unmanned autonomous vehicles based on the predetermined probability of false alarms under various intentional and unintentional influencing factors. The focus of this study is on the relevant issue of the safe use of LiDAR data and measurement systems within the “smart city” infrastructure. The research team analyzed and systematized various external impacts on the LiDAR systems, as well as the state-of-the-art approaches to improving their security and resilience. It has been established that the current works on the analysis of external influences on the LiDARs and methods for their mitigation focus mainly on physical (hardware) approaches (proposing most often other types of modulation and optical signal frequencies), and less often software approaches, through the use of additional anomaly detection techniques and data integrity verification systems, as well as improving the efficiency of data filtering in the cloud point. In addition, the sources analyzed in this paper do not offer methodological support for the design of the LiDAR in the very early stages of their creation, taking into account a priori assessment of the allowed SNR threshold and probability of detecting a reflected pulse and the requirements to minimize the probability of “missing” an object when scanning with no a priori assessments of the detection probability characteristics of the LiDAR. The authors propose a synthetic approach as a mathematical tool for designing a resilient LiDAR system. The approach is based on the physics of infrared radiation, the Bayesian theory, and the Neyman–Pearson criterion. It features the use of a predetermined threshold for false alarms, the probability of interference in the analytics, and the characteristics of the LiDAR’s receivers. The result is the analytical solution to the problem of calculating the allowed SNR while stabilizing the level of “false alarms” in terms of background noise caused by a given type of interference. The work presents modelling results for the “false alarm” probability values depending on the selected optimality criterion. The efficiency of the proposed approach has been proven by the simulation results of the received optical power of the LiDAR’s signal based on the calculated SNR threshold and noise values.


2022 ◽  
Author(s):  
Rocío García-Cuevas ◽  
Javier F. Jiménez-Alonso ◽  
Carlos Renedo M.C. ◽  
Francisco Martinez

<p>The evaluation of the vibration performance of footbridges due to walking pedestrians is an issue of increasing importance in current footbridge design practice. The growing trend of slender footbridges with long spans and light materials has led to serviceability problems in lateral vibrations, which occur when the number of pedestrians reaches a “critical number”. Considering the mode of vibration in which the lateral instability is more likely to develop, the structural response depends on the modal characteristics of the footbridge; in particular, the natural frequency and the damping ratio. These modal parameters are stochastic variables, as it is not possible to determine them without a level of uncertainty. Thus, the purpose of this paper is to obtain the value of the lateral dynamic response of slender footbridges with a certain confidence level under uncertainty conditions. The uncertainties of those modal parameters are considered using a probabilistic approach. Both the natural frequency and the damping ratio are modelled as uncorrelated random variables that follow a predetermined probabilistic distribution function. Consequently, the structural response will also be described by a probabilistic distribution function, which can be estimated through Monte Carlo numerical simulations. As a result, the study allows the footbridge lateral response and the critical number of pedestrians to be calculated for different confidence levels and load scenarios, especially for crowd densities above the “critical number”.</p>


Author(s):  
Antonio Aruta ◽  
Stefano Albanese ◽  
Linda Daniele ◽  
Claudia Cannatelli ◽  
Jamie T. Buscher ◽  
...  

AbstractIn 2017, a geochemical survey was carried out across the Commune of Santiago, a local administrative unit located at the center of the namesake capital city of Chile, and the concentration of a number of major and trace elements (53 in total) was determined on 121 topsoil samples. Multifractal IDW (MIDW) interpolation method was applied to raw data to generate geochemical baseline maps of 15 potential toxic elements (PTEs); the concentration–area (C-A) plot was applied to MIDW grids to highlight the fractal distribution of geochemical data. Data of PTEs were elaborated to statistically determine local geochemical baselines and to assess the spatial variation of the degree of soil contamination by means of a new method taking into account both the severity of contamination and its complexity. Afterwards, to discriminate the sources of PTEs in soils, a robust Principal Component Analysis (PCA) was applied to data expressed in isometric log-ratio (ilr) coordinates. Based on PCA results, a Sequential Binary Partition (SBP) was also defined and balances were determined to generate contrasts among those elements considered as proxies of specific contamination sources (Urban traffic, productive settlements, etc.). A risk assessment was finally completed to potentially relate contamination sources to their potential effect on public health in the long term. A probabilistic approach, based on Monte Carlo method, was deemed more appropriate to include uncertainty due to spatial variation of geochemical data across the study area. Results showed how the integrated use of multivariate statistics and compositional data analysis gave the authors the chance to both discriminate between main contamination processes characterizing the soil of Santiago and to observe the existence of secondary phenomena that are normally difficult to constrain. Furthermore, it was demonstrated how a probabilistic approach in risk assessment could offer a more reliable view of the complexity of the process considering uncertainty as an integral part of the results.


2022 ◽  
Vol 12 (2) ◽  
pp. 635
Author(s):  
Jeong-Seok Lee ◽  
Ik-Soon Cho

To protect the environment around the world, we are actively developing ecofriendly energy. Offshore wind farm generation installed in the sea is extremely large among various energies, and friction with ships occurs regularly. Other than the traffic designated area and the traffic separate scheme, traffic routes in other sea areas are not protected in Korea. Furthermore, due to increased cargo volume and ship size, there is a risk of collisions with marine facilities and marine pollution. In this study, maritime safety traffic routes that must be preserved are created to ensure the safety of maritime traffic and to prevent accidents with ecofriendly energy projects. To construct maritime traffic routes, the analysis area is divided, and ships are classified using big data. These data are used to estimate density, and 50% maritime traffic is chosen. This result is obtained by categorizing the main route, inner branch route, and outer branch route. The Korean maritime traffic route is constructed, and the width of the route is indicated. Furthermore, this route can be applied as a navigation route for maritime autonomous surface ships.


2022 ◽  
Author(s):  
Anita Raimondi ◽  
Maria Gloria Di Chiano ◽  
Mariana Marchioni ◽  
Umberto Sanfilippo ◽  
Gianfranco Becciu

Abstract Sustainable Urban Drainage Systems (SuDS) gatherer effective strategies and control systems for stormwater management especially in highly urbanized areas characterized by large impervious surfaces that increase runoff peak flow and volume. The main goal is to restore the natural water balance by increasing infiltration, evapotranspiration and promoting rainwater reuse. This paper proposes an analytical probabilistic approach for the modelling SuDS applicable to different structures and goals. Developed equations allow to estimate the probability of overflow and the probability of pre-filling at the end of dry periods, to evaluate the efficiency of the storage in rainwater management and its ability to empty between consecutive events. A great advantage of the proposed method is that it allows to consider a chain of rainfall events; this aspect is particularly important for control systems SuDS characterized by low outflow rates which storage capacity is often not completely available at the end of a dry period because pre-filled by previous events. Suggested formulas were tested to two cases studies in Milan and Genoa, Italy.


Sign in / Sign up

Export Citation Format

Share Document