explicit formulas
Recently Published Documents


TOTAL DOCUMENTS

856
(FIVE YEARS 180)

H-INDEX

36
(FIVE YEARS 4)

2022 ◽  
Vol 7 (2) ◽  
pp. 2929-2939
Author(s):  
Hye Kyung Kim ◽  

<abstract><p>The $ r $-Lah numbers generalize the Lah numbers to the $ r $-Stirling numbers in the same sense. The Stirling numbers and the central factorial numbers are one of the important tools in enumerative combinatorics. The $ r $-Lah number counts the number of partitions of a set with $ n+r $ elements into $ k+r $ ordered blocks such that $ r $ distinguished elements have to be in distinct ordered blocks. In this paper, the $ r $-central Lah numbers and the $ r $-central Lah-Bell numbers ($ r\in \mathbb{N} $) are introduced parallel to the $ r $-extended central factorial numbers of the second kind and $ r $-extended central Bell polynomials. In addition, some identities related to these numbers including the generating functions, explicit formulas, binomial convolutions are derived. Moreover, the $ r $-central Lah numbers and the $ r $-central Lah-Bell numbers are shown to be represented by Riemann integral, respectively.</p></abstract>


Author(s):  
M. V. Ignatenko ◽  
L. A. Yanovich

This article is devoted to the problem of operator interpolation and functional differentiation. Some information about the variational derivatives and explicit formulas for the exact solutions of the simplest equations containing the first variational derivatives of the required functional are given. For functionals defined on sets of functions and square matrices, various interpolating polynomials of the Hermitе type with nodes of the second multiplicity, which contain the first variational derivatives of the interpolated operator, are constructed. The presented solutions of the Hermitе interpolation problems are based on the algebraic Chebyshev system of functions. For analytic functions with an argument from a set of square matrices, explicit formulas for antiderivatives of functionals are obtained. The solution of some differential equations with integral operators of a special form and the first variational derivatives is found. The problem of the inverse interpolation of functions and operators is considered. Explicit schemes for constructing inverse functions and functionals, including the case of functions of a matrix variable, obtained using certain well-known results of interpolation theory, are demonstrated. Data representation is illustrated by a number of examples.


Laser Physics ◽  
2021 ◽  
Vol 32 (2) ◽  
pp. 025201
Author(s):  
Yang Leng ◽  
Li Yang

Abstract We examine the validity of the parity-time ( P T )-symmetric operation in protecting quantum state and entanglement in the non-zero temperature environment. Special attention is paid to the dependence of quantum fidelity and entanglement on the temperature. In particular, by solving the master equation, we get the exact analytical or numerical simulation expressions of the explicit formulas of protection, showing explicitly that P T -symmetric operation does indeed help in protecting quantum state from finite temperature decoherence.


Author(s):  
Kengo Fukunaga ◽  
Kohta Gejima

Let [Formula: see text] be a normalized cuspidal Hecke eigenform. We give explicit formulas for weighted averages of the rightmost critical values of triple product [Formula: see text]-functions [Formula: see text], where [Formula: see text] and [Formula: see text] run over an orthogonal basis of [Formula: see text] consisting of normalized cuspidal Hecke eigenforms. Those explicit formulas provide us an arithmetic expression of the rightmost critical value of the individual triple product [Formula: see text]-functions.


Author(s):  
Steven Charlton ◽  
◽  
Claude Duhr ◽  
Herbert Gangl ◽  
◽  
...  

We define a variant of real-analytic polylogarithms that are single-valued and that satisfy ''clean'' functional relations that do not involve any products of lower weight functions. We discuss the basic properties of these functions and, for depths one and two, we present some explicit formulas and results. We also give explicit formulas for the single-valued and clean single-valued version attached to the Nielsen polylogarithms Sn,2(x), and we show how the clean single-valued functions give new evaluations of multiple polylogarithms at certain algebraic points.


Author(s):  
Arnak V. Poghosyan ◽  
Lusine D. Poghosyan ◽  
Rafayel H. Barkhudaryan

We investigate the convergence of the quasi-periodic approximations in different frameworks and reveal exact asymptotic estimates of the corresponding errors. The estimates facilitate a fair comparison of the quasi-periodic approximations to other classical well-known approaches. We consider a special realization of the approximations by the inverse of the Vandermonde matrix, which makes it possible to prove the existence of the corresponding implementations, derive explicit formulas and explore convergence properties. We also show the application of polynomial corrections for the convergence acceleration of the quasi-periodic approximations. Numerical experiments reveal the auto-correction phenomenon related to the polynomial corrections so that utilization of approximate derivatives surprisingly results in better convergence compared to the expansions with the exact ones.


2021 ◽  
Vol 27 (4) ◽  
pp. 80-89
Author(s):  
Laala Khaldi ◽  
◽  
Farid Bencherif ◽  
Miloud Mihoubi ◽  
◽  
...  

In this paper, we give several explicit formulas involving the n-th Euler polynomial E_{n}\left(x\right). For any fixed integer m\geq n, the obtained formulas follow by proving that E_{n}\left(x\right) can be written as a linear combination of the polynomials x^{n}, \left(x+r\right)^{n},\ldots, \left(x+rm\right)^{n}, with r\in \left \{1,-1,\frac{1}{2}\right\}. As consequence, some explicit formulas for Bernoulli numbers may be deduced.


2021 ◽  
Vol 2092 (1) ◽  
pp. 012016
Author(s):  
A.S. Demidov

Abstract A request for an inverse problem, as well as for an incorrect problem produces tens of millions of answers in the Internet. In the past few decades, hundreds of international conferences on these topics have been held annually. Problems of this kind are quite involved, and their numerical analysis requires the development of special methods and numerical algorithms. Explicit formulas provide the main tool for testing these methods and numerical algorithms. The Cauchy problem for an elliptic equation is a classical ill-posed problem, which serves as a model for many inverse and incorrect problems. In the present paper we give a numerically realizable explicit formula for solving the Cauchy problem in a two-dimensional domain for a general second-order linear elliptic equation with analytic coefficients and the Cauchy analytic data on the analytic boundary.


2021 ◽  
Vol 27 (4) ◽  
pp. 62-79
Author(s):  
Moussa Benoumhani ◽  

Using the explicit formulas of the generating polynomials of Fibonacci and Lucas, we prove some new identities involving Fibonacci and Lucas numbers. As an application of these identities, we show how some Diophantine equations have infinitely many solutions. To illustrate the powerful of this elementary method, we give proofs of many known formulas.


Sign in / Sign up

Export Citation Format

Share Document