A limit theorem for stochastic functions, constructed in terms of quadratic forms from Gaussian random variables

1989 ◽  
Vol 40 (4) ◽  
pp. 419-424
Author(s):  
Yu. M. Ryzhov
1996 ◽  
Vol 40 (2) ◽  
pp. 250-260 ◽  
Author(s):  
G. Christoph ◽  
Yu. V. Prokhorov ◽  
V. V. Ulyanov

2016 ◽  
Vol 64 (1) ◽  
pp. 153-165 ◽  
Author(s):  
Tareq Y. Al-Naffouri ◽  
Muhammed Moinuddin ◽  
Nizar Ajeeb ◽  
Babak Hassibi ◽  
Aris L. Moustakas

2015 ◽  
Vol 59 (2) ◽  
pp. 208-221 ◽  
Author(s):  
V. I. Bogachev ◽  
E. D. Kosov ◽  
I. Nourdin ◽  
G. Poly

2021 ◽  
Vol 36 (2) ◽  
pp. 243-255
Author(s):  
Wei Liu ◽  
Yong Zhang

AbstractIn this paper, we investigate the central limit theorem and the invariance principle for linear processes generated by a new notion of independently and identically distributed (IID) random variables for sub-linear expectations initiated by Peng [19]. It turns out that these theorems are natural and fairly neat extensions of the classical Kolmogorov’s central limit theorem and invariance principle to the case where probability measures are no longer additive.


2021 ◽  
Vol 499 (1) ◽  
pp. 124982
Author(s):  
Benjamin Avanzi ◽  
Guillaume Boglioni Beaulieu ◽  
Pierre Lafaye de Micheaux ◽  
Frédéric Ouimet ◽  
Bernard Wong

Sign in / Sign up

Export Citation Format

Share Document