A CENTRAL LIMIT THEOREM FOR QUADRATIC FORMS IN INDEPENDENT RANDOM VARIABLES

Vol. 2 ◽  
1990 ◽  
pp. 364-371
1994 ◽  
Vol 17 (2) ◽  
pp. 323-340 ◽  
Author(s):  
Deli Li ◽  
M. Bhaskara Rao ◽  
Xiangchen Wang

Combining Feller's criterion with a non-uniform estimate result in the context of the Central Limit Theorem for partial sums of independent random variables, we obtain several results on the Law of the Iterated Logarithm. Two of these results refine corresponding results of Wittmann (1985) and Egorov (1971). In addition, these results are compared with the corresponding results of Teicher (1974), Tomkins (1983) and Tomkins (1990)


1994 ◽  
Vol 26 (01) ◽  
pp. 104-121 ◽  
Author(s):  
Allen L. Roginsky

A central limit theorem for cumulative processes was first derived by Smith (1955). No remainder term was given. We use a different approach to obtain such a term here. The rate of convergence is the same as that in the central limit theorems for sequences of independent random variables.


1971 ◽  
Vol 8 (01) ◽  
pp. 52-59 ◽  
Author(s):  
C. C. Heyde

It is possible to interpret the classical central limit theorem for sums of independent random variables as a convergence rate result for the law of large numbers. For example, ifXi, i= 1, 2, 3, ··· are independent and identically distributed random variables withEXi=μ, varXi= σ2< ∞ andthen the central limit theorem can be written in the formThis provides information on the rate of convergence in the strong lawas. (“a.s.” denotes almost sure convergence.) It is our object in this paper to discuss analogues for the super-critical Galton-Watson process.


1971 ◽  
Vol 8 (1) ◽  
pp. 52-59 ◽  
Author(s):  
C. C. Heyde

It is possible to interpret the classical central limit theorem for sums of independent random variables as a convergence rate result for the law of large numbers. For example, if Xi, i = 1, 2, 3, ··· are independent and identically distributed random variables with EXi = μ, var Xi = σ2 < ∞ and then the central limit theorem can be written in the form This provides information on the rate of convergence in the strong law as . (“a.s.” denotes almost sure convergence.) It is our object in this paper to discuss analogues for the super-critical Galton-Watson process.


Sign in / Sign up

Export Citation Format

Share Document