Limit ?-distributions for sums of random variables, connected in an inhomogeneous Markov chain with two states

1984 ◽  
Vol 36 (2) ◽  
pp. 162-167
Author(s):  
M. N. Marushin
1988 ◽  
Vol 25 (01) ◽  
pp. 204-209 ◽  
Author(s):  
Ravindra M. Phatarfod

We derive the Laplace transforms of sums and weighted sums of random variables forming a Markov chain whose stationary distribution is gamma. Both seasonal and non-seasonal cases are considered. The results are applied to two problems in stochastic reservoir theory.


Author(s):  
H. D. Miller

SummaryThis paper is essentially a continuation of the previous one (5) and the notation established therein will be freely repeated. The sequence {ξr} of random variables is defined on a positively regular finite Markov chain {kr} as in (5) and the partial sums and are considered. Let ζn be the first positive ζr and let πjk(y), the ‘ruin’ function or absorption probability, be defined by The main result (Theorem 1) is an asymptotic expression for πjk(y) for large y in the case when , the expectation of ξ1 being computed under the unique stationary distribution for k0, the initial state of the chain, and unconditional on k1.


1988 ◽  
Vol 25 (1) ◽  
pp. 204-209 ◽  
Author(s):  
Ravindra M. Phatarfod

We derive the Laplace transforms of sums and weighted sums of random variables forming a Markov chain whose stationary distribution is gamma. Both seasonal and non-seasonal cases are considered. The results are applied to two problems in stochastic reservoir theory.


Sign in / Sign up

Export Citation Format

Share Document