Approximation theorems for generalized almost periodic functions

1929 ◽  
Vol 29 (1) ◽  
pp. 70-86 ◽  
Author(s):  
Philip Franklin
2021 ◽  
Vol 13 (3) ◽  
pp. 687-700
Author(s):  
A.S. Serdyuk ◽  
A.L. Shidlich

Direct and inverse approximation theorems are proved in the Besicovitch-Stepanets spaces $B{\mathcal S}^{p}$ of almost periodic functions in terms of the best approximations of functions and their generalized moduli of smoothness.


1999 ◽  
Vol 32 (2) ◽  
Author(s):  
Stanislaw Stoinski

Mathematika ◽  
1955 ◽  
Vol 2 (2) ◽  
pp. 128-131 ◽  
Author(s):  
J. D. Weston

2018 ◽  
Vol 14 (09) ◽  
pp. 2343-2368
Author(s):  
Giacomo Cherubini

We prove the existence of asymptotic moments and an estimate on the tails of the limiting distribution for a specific class of almost periodic functions. Then we introduce the hyperbolic circle problem, proving an estimate on the asymptotic variance of the remainder that improves a result of Chamizo. Applying the results of the first part we prove the existence of limiting distribution and asymptotic moments for three functions that are integrated versions of the remainder, and were considered originally (with due adaptations to our settings) by Wolfe, Phillips and Rudnick, and Hill and Parnovski.


Sign in / Sign up

Export Citation Format

Share Document