Continuity module of the distribution of additive functions related to the largest prime factors of integers

1990 ◽  
Vol 55 (5) ◽  
pp. 450-461 ◽  
Author(s):  
J. M. De Koninck ◽  
I. Kátai ◽  
A. Mercier



2020 ◽  
Vol 63 (4) ◽  
pp. 1031-1047
Author(s):  
Florian Luca ◽  
Sibusiso Mabaso ◽  
Pantelimon Stănică

AbstractIn this paper, for a positive integer n ≥ 1, we look at the size and prime factors of the iterates of the Ramanujan τ function applied to n.



Author(s):  
Yuchen Ding ◽  
Xiaodong Lü




2001 ◽  
Vol 38 (1-4) ◽  
pp. 45-50 ◽  
Author(s):  
A. Balog

For an integer n≯1 letP(n) be the largest prime factor of n. We prove that there are infinitely many triplets of consecutive integers with descending largest prime factors, that is P(n - 1) ≯P(n)≯P(n+1) occurs for infinitely many integers n.



1986 ◽  
Vol 296 (1) ◽  
pp. 265-265 ◽  
Author(s):  
Adolf Hildebrand ◽  
G{érald Tenenbaum
Keyword(s):  




1970 ◽  
Vol 77 (5) ◽  
pp. 510 ◽  
Author(s):  
G. J. Simmons
Keyword(s):  


1988 ◽  
Vol 310 (1) ◽  
pp. 257 ◽  
Author(s):  
Adolf Hildebrand
Keyword(s):  


1999 ◽  
Vol 22 (1) ◽  
pp. 83-97 ◽  
Author(s):  
Yoshihisa UCHIDA
Keyword(s):  


Sign in / Sign up

Export Citation Format

Share Document