On triplets with descending largest prime factors
2001 ◽
Vol 38
(1-4)
◽
pp. 45-50
◽
For an integer n≯1 letP(n) be the largest prime factor of n. We prove that there are infinitely many triplets of consecutive integers with descending largest prime factors, that is P(n - 1) ≯P(n)≯P(n+1) occurs for infinitely many integers n.
1976 ◽
Vol 22
(1)
◽
pp. 1-11
◽
1992 ◽
Vol 44
(6)
◽
pp. 1121-1154
◽
1998 ◽
Vol 64
(2)
◽
pp. 266-276
◽
1972 ◽
Vol 79
(10)
◽
pp. 1082-1089
◽
1991 ◽
Vol 109
(2)
◽
pp. 263-276
Keyword(s):
1857 ◽
Vol 21
(3)
◽
pp. 407-409
2012 ◽
Vol 08
(06)
◽
pp. 1537-1540
◽
1986 ◽
Vol 100
(2)
◽
pp. 229-236
◽
Keyword(s):
2009 ◽
Vol 80
(3)
◽
pp. 413-422
◽