Estimates of operator polynomials in symmetric spaces. Functional calculus for absolute contraction operators

1979 ◽  
Vol 25 (6) ◽  
pp. 464-471 ◽  
Author(s):  
V. V. Peller

2002 ◽  
Vol 102 (2) ◽  
pp. 215-225
Author(s):  
Teresa Bermύdez ◽  
Manuel González ◽  
Antonio Martinόn


2018 ◽  
Vol 2018 (1) ◽  
pp. 35-46
Author(s):  
Vladimir Chilin ◽  
◽  
Aleksandr Veksler ◽  








Author(s):  
SANJIV KUMAR GUPTA ◽  
KATHRYN E. HARE

Abstract Let $G/K$ be an irreducible symmetric space, where G is a noncompact, connected Lie group and K is a compact, connected subgroup. We use decay properties of the spherical functions to show that the convolution product of any $r=r(G/K)$ continuous orbital measures has its density function in $L^{2}(G)$ and hence is an absolutely continuous measure with respect to the Haar measure. The number r is approximately the rank of $G/K$ . For the special case of the orbital measures, $\nu _{a_{i}}$ , supported on the double cosets $Ka_{i}K$ , where $a_{i}$ belongs to the dense set of regular elements, we prove the sharp result that $\nu _{a_{1}}\ast \nu _{a_{2}}\in L^{2},$ except for the symmetric space of Cartan class $AI$ when the convolution of three orbital measures is needed (even though $\nu _{a_{1}}\ast \nu _{a_{2}}$ is absolutely continuous).



1985 ◽  
Vol 18 (1) ◽  
Author(s):  
H.K. Nickerson
Keyword(s):  


Sign in / Sign up

Export Citation Format

Share Document