regular elements
Recently Published Documents


TOTAL DOCUMENTS

232
(FIVE YEARS 36)

H-INDEX

14
(FIVE YEARS 1)

Author(s):  
Catarina Carvalho ◽  
Barnaby Martin

We study the algebraic properties of binary relations whose underlying digraph is smooth, that is, has no source or sink. Such objects have been studied as surjective hyper-operations (shops) on the corresponding vertex set, and as binary relations that are defined everywhere and whose inverse is also defined everywhere. In the latter formulation, they have been called multipermutations. We study the lattice structure of sets (monoids) of multipermutations over an [Formula: see text]-element domain. Through a Galois connection, these monoids form the algebraic counterparts to sets of relations closed under definability in positive first-order logic without equality. We show one side of this Galois connection, and give a simple dichotomy theorem for the evaluation problem of positive first-order logic without equality on the class of structures whose preserving multipermutations form a monoid closed under inverse. These problems turn out either to be in [Formula: see text]or to be [Formula: see text]-complete. We go on to study the monoid of all multipermutations on an [Formula: see text]-element domain, under usual composition of relations. We characterize its Green relations, regular elements and show that it does not admit a generating set that is polynomial on [Formula: see text].


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Amit Kulshrestha ◽  
Rijubrata Kundu ◽  
Anupam Singh

Abstract Let 𝐺 be a connected reductive group defined over F q \mathbb{F}_{q} . Fix an integer M ≥ 2 M\geq 2 , and consider the power map x ↦ x M x\mapsto x^{M} on 𝐺. We denote the image of G ⁢ ( F q ) G(\mathbb{F}_{q}) under this map by G ⁢ ( F q ) M G(\mathbb{F}_{q})^{M} and estimate what proportion of regular semisimple, semisimple and regular elements of G ⁢ ( F q ) G(\mathbb{F}_{q}) it contains. We prove that, as q → ∞ q\to\infty , the set of limits for each of these proportions is the same and provide a formula. This generalizes the well-known results for M = 1 M=1 where all the limits take the same value 1. We also compute this more explicitly for the groups GL ⁢ ( n , q ) \mathrm{GL}(n,q) and U ⁢ ( n , q ) \mathrm{U}(n,q) and show that the set of limits are the same for these two group, in fact, in bijection under q ↦ - q q\mapsto-q for a fixed 𝑀.


Author(s):  
Sławomir Przybyło

Abstract We introduce the definition of the three-element equivalential algebra R with conjunction on the regular elements. We study the variety generated by R and prove the Representation Theorem. Then, we construct the finitely generated free algebras and compute the free spectra in this variety.


Author(s):  
Umashankara Kelathaya ◽  
Savitha Varkady ◽  
Manjunatha Prasad Karantha

In this paper, the notion of “strongly unit regular element”, for which every reflexive generalized inverse is associated with an inverse complement, is introduced. Noting that every strongly unit regular element is unit regular, some characterizations of unit regular elements are obtained in terms of inverse complements and with the help of minus partial order. Unit generalized inverses of given unit regular element are characterized as sum of reflexive generalized inverses and the generators of its annihilators. Surprisingly, it has been observed that the class of strongly regular elements and unit regular elements are the same. Also, several classes of generalized inverses are characterized in terms of inverse complements.


Author(s):  
SANJIV KUMAR GUPTA ◽  
KATHRYN E. HARE

Abstract Let $G/K$ be an irreducible symmetric space, where G is a noncompact, connected Lie group and K is a compact, connected subgroup. We use decay properties of the spherical functions to show that the convolution product of any $r=r(G/K)$ continuous orbital measures has its density function in $L^{2}(G)$ and hence is an absolutely continuous measure with respect to the Haar measure. The number r is approximately the rank of $G/K$ . For the special case of the orbital measures, $\nu _{a_{i}}$ , supported on the double cosets $Ka_{i}K$ , where $a_{i}$ belongs to the dense set of regular elements, we prove the sharp result that $\nu _{a_{1}}\ast \nu _{a_{2}}\in L^{2},$ except for the symmetric space of Cartan class $AI$ when the convolution of three orbital measures is needed (even though $\nu _{a_{1}}\ast \nu _{a_{2}}$ is absolutely continuous).


2021 ◽  
Vol 53 ◽  
Author(s):  
Sorasak Leeratanavalee ◽  
Jukkrit Daengsaen

Any relational hypersubstitution for algebraic systems of type (τ,τ′) = ((mi)i∈I,(nj)j∈J) is a mapping which maps any mi-ary operation symbol to an mi-ary term and maps any nj - ary relational symbol to an nj-ary relational term preserving arities, where I,J are indexed sets. Some algebraic properties of the monoid of all relational hypersubstitutions for algebraic systems of a special type, especially the characterization of its order and the set of all regular elements, were first studied by Phusanga and Koppitz[13] in 2018. In this paper, we study the Green’srelationsontheregularpartofthismonoidofaparticulartype(τ,τ′) = ((m),(n)), where m, n ≥ 2.


Author(s):  
TSIU-KWEN LEE ◽  
JHENG-HUEI LIN ◽  
TRUONG CONG QUYNH

Abstract Let R be a semiprime ring with extended centroid C and let $I(x)$ denote the set of all inner inverses of a regular element x in R. Given two regular elements $a, b$ in R, we characterise the existence of some $c\in R$ such that $I(a)+I(b)=I(c)$ . Precisely, if $a, b, a+b$ are regular elements of R and a and b are parallel summable with the parallel sum ${\cal P}(a, b)$ , then $I(a)+I(b)=I({\cal P}(a, b))$ . Conversely, if $I(a)+I(b)=I(c)$ for some $c\in R$ , then $\mathrm {E}[c]a(a+b)^{-}b$ is invariant for all $(a+b)^{-}\in I(a+b)$ , where $\mathrm {E}[c]$ is the smallest idempotent in C satisfying $c=\mathrm {E}[c]c$ . This extends earlier work of Mitra and Odell for matrix rings over a field and Hartwig for prime regular rings with unity and some recent results proved by Alahmadi et al. [‘Invariance and parallel sums’, Bull. Math. Sci.10(1) (2020), 2050001, 8 pages] concerning the parallel summability of unital prime rings and abelian regular rings.


Author(s):  
L. Klingler ◽  
A. Omairi

In the 1960’s, Matlis defined an h h -local domain to be a (commutative) integral domain in which each nonzero element is contained in only finitely many maximal ideals and each nonzero prime ideal is contained in a unique maximal ideal. For rings with zero-divisors, by changing “nonzero” to “regular,” one obtains the definition of an h h -local ring. Nearly two dozen equivalent characterizations of h h -local domain have appeared in the literature. We show that most of these remain equivalent to h h -local ring if one also replaces “localization” by “regular localization” and assumes that the ring is a Marot ring (i.e., every regular ideal is generated by its regular elements).


Author(s):  
Nitin Bisht

An element of a ring [Formula: see text] is said to be [Formula: see text]-precious if it can be written as the sum of a von Neumann regular element, an idempotent element and a nilpotent element. If all the elements of a ring [Formula: see text] are [Formula: see text]-precious, then [Formula: see text] is called an [Formula: see text]-precious ring. We study some basic properties of [Formula: see text]-precious rings. We also characterize von Neumann regular elements in [Formula: see text] when [Formula: see text] is a Euclidean domain and by this argument, we produce elements that are [Formula: see text]-precious but either not [Formula: see text]-clean or not precious.


Sign in / Sign up

Export Citation Format

Share Document