Local existence inC b 0, 1 and blow-up of the solutions of the Cauchy Problem for a quasilinear hyperbolic system with a singular source term

2001 ◽  
Vol 32 (3) ◽  
pp. 343-357
Author(s):  
Jo�o-Paulo Dias ◽  
M�rio Figueira
2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Zenggui Wang

In this paper, we investigate the life-span of classical solutions to hyperbolic inverse mean curvature flow. Under the condition that the curve can be expressed in the form of a graph, we derive a hyperbolic Monge–Ampère equation which can be reduced to a quasilinear hyperbolic system in terms of Riemann invariants. By the theory on the local solution for the Cauchy problem of the quasilinear hyperbolic system, we discuss life-span of classical solutions to the Cauchy problem of hyperbolic inverse mean curvature.


2019 ◽  
Vol 18 (02) ◽  
pp. 333-358
Author(s):  
Ben Duan ◽  
Zhen Luo ◽  
Yan Zhou

In this paper, we consider the Cauchy problem of a viscous compressible shallow water equations with the Coriolis force term and non-constant viscosities. More precisely, the viscous coefficients are constants multiple of height, the equations are degenerate when vacuum appears. For initial data allowing vacuum, the local existence of strong solution is obtained and a blow-up criterion is established.


Sign in / Sign up

Export Citation Format

Share Document