Geometrically finite groups, Patterson-Sullivan measures and Ratner's ridigity theorem

1990 ◽  
Vol 99 (1) ◽  
pp. 601-626 ◽  
Author(s):  
L. Flaminio ◽  
R. J. Spatzier
1996 ◽  
Vol 120 (4) ◽  
pp. 647-662 ◽  
Author(s):  
Sanju L. Velani

1·1. Groups of the first kind. In [11], Patterson proved a hyperbolic space analogue of Khintchine's theorem on simultaneous Diophantine approximation. In order to state Patterson's theorem, some notation and terminology are needed. Let ‖x‖ denote the usual Euclidean norm of a vector x in k+1, k + 1-dimensional Euclidean space, and let be the unit ball model of k + 1-dimensional hyperbolic space with Poincaré metric ρ. A non-elementary geometrically finite group G acting on Bk + 1 is a discrete subgroup of Möb (Bk+l), the group of orientation preserving Mobius transformations preserving Bk + 1, for which there exists some convex fundamental polyhedron with finitely many faces. Since G is non-elementary, the limit set L(G) of G – the set of limit points in the unit sphere Sk of any orbit of G in Bk+1 – is uncountable. The group G is said to be of the first kind if L(G) = Sk and of the second kind otherwise.


2005 ◽  
Vol 15 (05n06) ◽  
pp. 799-813
Author(s):  
ROGER C. ALPERIN ◽  
GENNADY A. NOSKOV

We prove that any nonelementary geometrically finite group of isometries of a pinched Hadamard manifold has nonzero algebraic entropy in the sense of M. Gromov. In other words it has uniform exponential growth.


2008 ◽  
Vol 18 (07) ◽  
pp. 1137-1177 ◽  
Author(s):  
OLIVER GOODMAN ◽  
MICHAEL SHAPIRO

Viewing Dehn's algorithm as a rewriting system, we generalize to allow an alphabet containing letters which do not necessarily represent group elements. This extends the class of groups for which the algorithm solves the word problem to include finitely generated nilpotent groups, many relatively hyperbolic groups including geometrically finite groups and fundamental groups of certain geometrically decomposable 3-manifolds. The class has several nice closure properties. We also show that if a group has an infinite subgroup and one of exponential growth, and they commute, then it does not admit such an algorithm. We dub these Cannon's algorithms.


Sign in / Sign up

Export Citation Format

Share Document