Geometrically finite groups, Khintchine-type theorems and Hausdorff dimension

1996 ◽  
Vol 120 (4) ◽  
pp. 647-662 ◽  
Author(s):  
Sanju L. Velani

1·1. Groups of the first kind. In [11], Patterson proved a hyperbolic space analogue of Khintchine's theorem on simultaneous Diophantine approximation. In order to state Patterson's theorem, some notation and terminology are needed. Let ‖x‖ denote the usual Euclidean norm of a vector x in k+1, k + 1-dimensional Euclidean space, and let be the unit ball model of k + 1-dimensional hyperbolic space with Poincaré metric ρ. A non-elementary geometrically finite group G acting on Bk + 1 is a discrete subgroup of Möb (Bk+l), the group of orientation preserving Mobius transformations preserving Bk + 1, for which there exists some convex fundamental polyhedron with finitely many faces. Since G is non-elementary, the limit set L(G) of G – the set of limit points in the unit sphere Sk of any orbit of G in Bk+1 – is uncountable. The group G is said to be of the first kind if L(G) = Sk and of the second kind otherwise.

2005 ◽  
Vol 15 (05n06) ◽  
pp. 799-813
Author(s):  
ROGER C. ALPERIN ◽  
GENNADY A. NOSKOV

We prove that any nonelementary geometrically finite group of isometries of a pinched Hadamard manifold has nonzero algebraic entropy in the sense of M. Gromov. In other words it has uniform exponential growth.


Author(s):  
CHRISTOPHER LUTSKO

Abstract We prove a theorem describing the limiting fine-scale statistics of orbits of a point in hyperbolic space under the action of a discrete subgroup. Similar results have been proved only in the lattice case with two recent infinite-volume exceptions by Zhang for Apollonian circle packings and certain Schottky groups. Our results hold for general Zariski dense, non-elementary, geometrically finite subgroups in any dimension. Unlike in the lattice case orbits of geometrically finite subgroups do not necessarily equidistribute on the whole boundary of hyperbolic space. But rather they may equidistribute on a fractal subset. Understanding the behavior of these orbits near the boundary is central to Patterson–Sullivan theory and much further work. Our theorem characterises the higher order spatial statistics and thus addresses a very natural question. As a motivating example our work applies to sphere packings (in any dimension) which are invariant under the action of such discrete subgroups. At the end of the paper we show how this statistical characterization can be used to prove convergence of moments and to write down the limiting formula for the two-point correlation function and nearest neighbor distribution. Moreover we establish a formula for the 2 dimensional limiting gap distribution (and cumulative gap distribution) which also applies in the lattice case.


2008 ◽  
Vol 18 (07) ◽  
pp. 1137-1177 ◽  
Author(s):  
OLIVER GOODMAN ◽  
MICHAEL SHAPIRO

Viewing Dehn's algorithm as a rewriting system, we generalize to allow an alphabet containing letters which do not necessarily represent group elements. This extends the class of groups for which the algorithm solves the word problem to include finitely generated nilpotent groups, many relatively hyperbolic groups including geometrically finite groups and fundamental groups of certain geometrically decomposable 3-manifolds. The class has several nice closure properties. We also show that if a group has an infinite subgroup and one of exponential growth, and they commute, then it does not admit such an algorithm. We dub these Cannon's algorithms.


Sign in / Sign up

Export Citation Format

Share Document